Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 207582 by sniper237 last updated on 19/May/24

∫_0 ^π  ln(sinx)dx=−πln2  ∫_0 ^1 lnΓ(x)dx = ln(2π)

0πln(sinx)dx=πln201lnΓ(x)dx=ln(2π)

Answered by mathzup last updated on 21/May/24

I=∫_0 ^π ln(sinx)dx=∫_0 ^(π/2) ln(sinx)dx  +∫_(π/2) ^π ln(sinx)dx(→x=(π/2)+t)  =−(π/2)ln(2)+∫_0 ^(π/2) ln(cost)dt  =−(π/2)ln2−(π/2)ln2=−πln2

I=0πln(sinx)dx=0π2ln(sinx)dx+π2πln(sinx)dx(x=π2+t)=π2ln(2)+0π2ln(cost)dt=π2ln2π2ln2=πln2

Answered by mathzup last updated on 21/May/24

Γ(x).Γ(1−x)=(π/(sin(πx))) ⇒  ln(Γ(x))+ln(Γ(1−x))=lnπ−ln(sin(πx))  ⇒∫_0 ^1 ln(Γ(x))dx+∫_0 ^1 ln(Γ(1−x))dx  =ln(π)−∫_0 ^1 ln(sin(πx))dx(→πx=t)  =ln(π)−∫_0 ^π ln(sint)(dt/π)  =ln(π)−(1/π)(−πln2)  =ln(π)+ln(2)=ln(2π)  but ∫_0 ^1 ln(Γ(1−x))dx=_(1−x=t) ∫_1 ^0 ln(Γ(t))(−dt)  =∫_0 ^1 ln(Γ(x)dx ⇒  ∫_0 ^1 ln(Γ(x))dx=(1/2)ln(2π)  il ya erreur dans l enonce !...

Γ(x).Γ(1x)=πsin(πx)ln(Γ(x))+ln(Γ(1x))=lnπln(sin(πx))01ln(Γ(x))dx+01ln(Γ(1x))dx=ln(π)01ln(sin(πx))dx(πx=t)=ln(π)0πln(sint)dtπ=ln(π)1π(πln2)=ln(π)+ln(2)=ln(2π)but01ln(Γ(1x))dx=1x=t10ln(Γ(t))(dt)=01ln(Γ(x)dx01ln(Γ(x))dx=12ln(2π)ilyaerreurdanslenonce!...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com