All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 207582 by sniper237 last updated on 19/May/24
∫0πln(sinx)dx=−πln2∫01lnΓ(x)dx=ln(2π)
Answered by mathzup last updated on 21/May/24
I=∫0πln(sinx)dx=∫0π2ln(sinx)dx+∫π2πln(sinx)dx(→x=π2+t)=−π2ln(2)+∫0π2ln(cost)dt=−π2ln2−π2ln2=−πln2
Γ(x).Γ(1−x)=πsin(πx)⇒ln(Γ(x))+ln(Γ(1−x))=lnπ−ln(sin(πx))⇒∫01ln(Γ(x))dx+∫01ln(Γ(1−x))dx=ln(π)−∫01ln(sin(πx))dx(→πx=t)=ln(π)−∫0πln(sint)dtπ=ln(π)−1π(−πln2)=ln(π)+ln(2)=ln(2π)but∫01ln(Γ(1−x))dx=1−x=t∫10ln(Γ(t))(−dt)=∫01ln(Γ(x)dx⇒∫01ln(Γ(x))dx=12ln(2π)ilyaerreurdanslenonce!...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com