All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 123896 by john_santu last updated on 29/Nov/20
∫π0sin2xxdx
Answered by mindispower last updated on 29/Nov/20
sin2(x)=1−cos(2x)2⇔∫0π1−cos(2x)2xdx=∫0π12x−∫0πcos(2x)2xdx=A−Bx=πt24=[x]0π−∫02cos(π2t2)πt.π2tdt=π−∫02cos(πt22)2πdt=π−π2∫02cos(πt22)dtRecall∫0ucos(πt22)dt=C(u)Ferneslintegralweget∫0πsin2(t)2tdt=π−π2C(2)=π2(2−C(2))
Terms of Service
Privacy Policy
Contact: info@tinkutara.com