Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 123896 by john_santu last updated on 29/Nov/20

  ∫_0 ^π  ((sin^2 x)/( (√x))) dx

π0sin2xxdx

Answered by mindispower last updated on 29/Nov/20

sin^2 (x)=((1−cos(2x))/2)  ⇔∫_0 ^π ((1−cos(2x))/(2(√x)))dx  =∫_0 ^π (1/(2(√x)))−∫_0 ^π ((cos(2x))/( 2(√x)))dx=A−B  x=((πt^2 )/4)  =[(√x)]_0 ^π −∫_0 ^2 ((cos((π/2)t^2 ))/( (√π)t)).(π/2)tdt  =(√π)−∫_0 ^2 ((cos(((πt^2 )/2)))/2)(√π)dt  =(√π)−((√π)/2)∫_0 ^2 cos(π(t^2 /2))dt  Recall ∫_0 ^u cos(π(t^2 /2))dt=C(u) Fernesl integral  we get  ∫_0 ^π ((sin^2 (t))/(2(√t)))dt=(√π)−((√π)/2)C(2)=((√π)/2)(2−C(2))

sin2(x)=1cos(2x)20π1cos(2x)2xdx=0π12x0πcos(2x)2xdx=ABx=πt24=[x]0π02cos(π2t2)πt.π2tdt=π02cos(πt22)2πdt=ππ202cos(πt22)dtRecall0ucos(πt22)dt=C(u)Ferneslintegralweget0πsin2(t)2tdt=ππ2C(2)=π2(2C(2))

Terms of Service

Privacy Policy

Contact: info@tinkutara.com