Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 162575 by Ar Brandon last updated on 30/Dec/21

∫_0 ^π (x^2 /(1+sinx))dx

0πx21+sinxdx

Answered by phanphuoc last updated on 30/Dec/21

you can put x=pi−t

youcanputx=pit

Answered by mindispower last updated on 30/Dec/21

du=(1/(1+sin(x)))⇒u=((2sin((x/2)))/(sin((x/2))+cos((x/2))))  IBP⇒2π^2 −4∫_0 ^π ((sin((x/2)))/(cos((x/2))+sin((x/2))))xdx  ∫_0 ^π ((sin((x/2)))/(cos((x/2))+sin((x/2))))xdx=4∫_0 ^(π/2) ((sin(y))/(sin(y)+cos(y)))ydy  =2∫_0 ^(π/2) ydy−2∫_0 ^(π/2) ((cos(y)−sin(y))/(sin(y)+cos(y)))ydy  =(π^2 /4)+2∫_0 ^(π/2) ln(sin(y)+cos(y))dy  (π^2 /4)+2∫_0 ^(π/2) ln((√2))+ln(sin(y+(π/4)))dy  =(π^2 /4)+πln((√2))+2∫_0 ^(π/4) ln(sin(y+(π/4)))dy+2∫_(π/4) ^(π/2) ln(sin(y+(π/4)))dy  =(π/2)((π/2)+ln(2))+2∫_0 ^(π/4) ln(cos(y))dy+2∫_0 ^(π/4) ln(cos(y))dy  ∫_0 ^(π/4) ln(cos(x))dx=(1/4)(2G−𝛑ln(2))  2G−π((ln(2))/2)+(π^2 /4)  ∫_0 ^π ((x^2 dx)/(1+sin(x)))=2π^2 −4(2G−((πln(2))/2)+(π^2 /4))  =π^2 +2πln(2)−8G

du=11+sin(x)u=2sin(x2)sin(x2)+cos(x2)IBP2π240πsin(x2)cos(x2)+sin(x2)xdx0πsin(x2)cos(x2)+sin(x2)xdx=40π2sin(y)sin(y)+cos(y)ydy=20π2ydy20π2cos(y)sin(y)sin(y)+cos(y)ydy=π24+20π2ln(sin(y)+cos(y))dyπ24+20π2ln(2)+ln(sin(y+π4))dy=π24+πln(2)+20π4ln(sin(y+π4))dy+2π4π2ln(sin(y+π4))dy=π2(π2+ln(2))+20π4ln(cos(y))dy+20π4ln(cos(y))dy0π4ln(cos(x))dx=14(2Gπln(2))2Gπln(2)2+π240πx2dx1+sin(x)=2π24(2Gπln(2)2+π24)=π2+2πln(2)8G

Commented by Ar Brandon last updated on 30/Dec/21

Cool ! Merci, grand.

Cool!Merci,grand.

Commented by mindispower last updated on 31/Dec/21

Avec plaisir Bonne journee

AvecplaisirBonnejournee

Commented by Ar Brandon last updated on 31/Dec/21

Meilleure a^�  vous !

Meilleurea`vous!

Commented by mindispower last updated on 31/Dec/21

tu vas faire MP maths spe?

tuvasfaireMPmathsspe?

Commented by Ar Brandon last updated on 31/Dec/21

Non, je n′ai pas penser a^�  le faire.  Je suis en 1^(er)  anne^� e IUT actuellement.  Et vous ?

Non,jenaipaspensera`lefaire.Jesuisen1erannee´IUTactuellement.Etvous?

Commented by mindispower last updated on 31/Dec/21

je suis en M2 Maths fondamental (Topologie Algebrique)  Bonne Continuation

jesuisenM2Mathsfondamental(TopologieAlgebrique)BonneContinuation

Commented by mindispower last updated on 01/Jan/22

bonjour je vais faire un compte  pour echanger pas de soucis

bonjourjevaisfaireuncomptepourechangerpasdesoucis

Terms of Service

Privacy Policy

Contact: info@tinkutara.com