Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 55930 by ajfour last updated on 06/Mar/19

∫_0 ^(  π) ((xtan x)/(sec x+tan x))dx = (is it (π^2 /2)−π)?

0πxtanxsecx+tanxdx=(isitπ22π)?

Answered by tanmay.chaudhury50@gmail.com last updated on 06/Mar/19

∫_0 ^π ((xsinx)/(1+sinx))dx  I=∫_0 ^π (((π−x)sin(π−x))/(1+sin(π−x)))dx  =∫_0 ^π (((π−x)sinx)/(1+sinx))dx  2I=∫_0 ^π ((πsinx−xsinx+xsinx)/(1+sinx))dx  2I=π∫_0 ^π ((sinx)/(1+sinx))dx  =π∫_0 ^π (1−(1/(1+sinx)))dx  ((2I)/π)=∫_0 ^π dx−∫_0 ^π ((1−sinx)/(cos^2 x))dx  ((2I)/π)=∫_0 ^π dx−∫_0 ^π sec^2 xdx+∫_0 ^π secxtanxdx  ((2I)/π)=∣x−tanx+secx∣_0 ^π   ((2I)/π)=(π−0−1)−(0−0+1)  ((2I)/π)=π−1−1  2I=π^2 −2π  I=(π^2 /2)−π

0πxsinx1+sinxdxI=0π(πx)sin(πx)1+sin(πx)dx=0π(πx)sinx1+sinxdx2I=0ππsinxxsinx+xsinx1+sinxdx2I=π0πsinx1+sinxdx=π0π(111+sinx)dx2Iπ=0πdx0π1sinxcos2xdx2Iπ=0πdx0πsec2xdx+0πsecxtanxdx2Iπ=∣xtanx+secx0π2Iπ=(π01)(00+1)2Iπ=π112I=π22πI=π22π

Commented by ajfour last updated on 06/Mar/19

Thanks Sir, great!

ThanksSir,great!

Commented by tanmay.chaudhury50@gmail.com last updated on 06/Mar/19

thank you sir...

thankyousir...

Commented by maxmathsup by imad last updated on 09/Mar/19

I =∫_0 ^π  ((x(1+sinx−1))/(1+sinx))dx =∫_0 ^π  xdx −∫_0 ^π   (x/(1+sinx)) dx but  ∫_0 ^π  xdx =[(x^2 /2)]_0 ^π =(π^2 /2)   and ∫_0 ^π   (x/(1+sinx)) dx =_(tan((x/2))=t)   ∫_0 ^∞     ((2arctan(t))/(1+((2t)/(1+t^2 )))) ((2dt)/(1+t^2 ))  =4 ∫_0 ^∞    ((arctan(t))/(1+t^2  +2t)) dt =4 ∫_0 ^∞   ((arctan(t))/((t+1)^2 )) dt     ( and by parts)  =4{ [−((arctan(t))/(t+1))]_0 ^∞  +∫_0 ^∞    (1/((t+1)(t^2 +1)))dt}  =4 ∫_0 ^∞      (dt/((t+1)(t^2  +1))) dt  let decompose F(t) =(1/((t+1)(t^2  +1))) ⇒  F(t) =(a/(t+1)) +((bt +c)/(t^2  +1))  a =lim_(t→−1) (t+1)F(t) = (1/2)  lim_(t→+∞) tF(t) = 0 =a+b ⇒b =−a =−(1/2) ⇒F(t)=(1/(2(t+1))) +((−(t/2)+c)/(t^2  +1))  F(0) =1 =(1/2) +c ⇒c=(1/2) ⇒F(t)=(1/(2(t+1))) −(1/2) ((t−1)/(t^2  +1)) ⇒  ∫_0 ^∞  F(t)dt =(1/2)[ln∣t+1∣−(1/2)ln(t^2  +1)]_0 ^(+∞)  +(1/2)[arctan(t)]_0 ^(+∞)   =(1/2)[ln∣((t+1)/(√(t^2  +1)))∣]_0 ^∞  +(π/4) =(π/4) ⇒  I =(π^2 /2) −4((π/4)) =(π^2 /2)−π  .

I=0πx(1+sinx1)1+sinxdx=0πxdx0πx1+sinxdxbut0πxdx=[x22]0π=π22and0πx1+sinxdx=tan(x2)=t02arctan(t)1+2t1+t22dt1+t2=40arctan(t)1+t2+2tdt=40arctan(t)(t+1)2dt(andbyparts)=4{[arctan(t)t+1]0+01(t+1)(t2+1)dt}=40dt(t+1)(t2+1)dtletdecomposeF(t)=1(t+1)(t2+1)F(t)=at+1+bt+ct2+1a=limt1(t+1)F(t)=12limt+tF(t)=0=a+bb=a=12F(t)=12(t+1)+t2+ct2+1F(0)=1=12+cc=12F(t)=12(t+1)12t1t2+10F(t)dt=12[lnt+112ln(t2+1)]0++12[arctan(t)]0+=12[lnt+1t2+1]0+π4=π4I=π224(π4)=π22π.

Answered by MJS last updated on 06/Mar/19

∫((xtan x)/(sec x +tan x))dx=∫((xsin x)/(1+sin x))dx=∫xdx−∫(x/(1+sin x))dx=  =(x^2 /2)−∫(x/(1+sin x))dx=       ∫(x/(1+sin x))dx=            [∫u′v=uv−∫uv′; u′=(1/(1+sin x)); v=x             u=−((cos x)/(1+sin x)); v′=1]       =−((xcos x)/(1+sin x))+∫((cos x)/(1+sin x))dx=       =−((xcos x)/(1+sin x))+ln (1+sin x)  =(x^2 /2)+((xcos x)/(1+sin x))−ln (1+sin x) +C  ⇒ your value is true

xtanxsecx+tanxdx=xsinx1+sinxdx=xdxx1+sinxdx==x22x1+sinxdx=x1+sinxdx=[uv=uvuv;u=11+sinx;v=xu=cosx1+sinx;v=1]=xcosx1+sinx+cosx1+sinxdx==xcosx1+sinx+ln(1+sinx)=x22+xcosx1+sinxln(1+sinx)+Cyourvalueistrue

Commented by ajfour last updated on 06/Mar/19

Thanks MJS Sir!

ThanksMJSSir!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com