Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 150828 by mnjuly1970 last updated on 15/Aug/21

   ∫_0 ^( ∞) (( sin^( 2) (x ))/(x(√x))) dx=^?  (√π)

0sin2(x)xxdx=?π

Answered by puissant last updated on 16/Aug/21

Q=∫_0 ^∞ ((sin^2 x)/(x(√x)))dx  =∫_0 ^∞ x^(−(3/2)) sin^2 xdx  =[(1/(1−(3/2)))x^(−(1/2)) sin^2 x]_0 ^∞ −∫_0 ^∞ −2x^(−(1/2)) ×2sinxcosxdx  =2∫_0 ^∞ ((sin2x)/( (√x)))dx  =_( (√x)→u) 2∫_0 ^∞ ((sin2u^2 )/u)(2udu)  =4∫_0 ^∞ sin2u^2 du = −4 im(∫_0 ^∞ e^(−2iu^2 ) du)   ∵   ∵   ∵  ∫_0 ^∞ e^(−((√(2i))u)^2 ) du =_( (√(2i))u→z) ∫_0 ^z e^(−z^2 ) (dz/( (√(2i))))  =(1/( (√2)))e^(−i(π/4)) ×((√π)/2)  =((√π)/(2(√2)))(((√2)/2)−i((√2)/2)) = ((√π)/4)−i((√π)/4)  Q = −4 im(∫_0 ^∞ e^(−2iu^2 ) du) = −4(−((√π)/4))        ∵∴  Q = (√π)..              ............Le puissant..........

Q=0sin2xxxdx=0x32sin2xdx=[1132x12sin2x]002x12×2sinxcosxdx=20sin2xxdx=xu20sin2u2u(2udu)=40sin2u2du=4im(0e2iu2du)0e(2iu)2du=2iuz0zez2dz2i=12eiπ4×π2=π22(22i22)=π4iπ4Q=4im(0e2iu2du)=4(π4)∵∴Q=π..............Lepuissant..........

Commented by mnjuly1970 last updated on 16/Aug/21

thank you so much...

thankyousomuch...

Answered by mathmax by abdo last updated on 17/Aug/21

Υ=∫_0 ^∞  ((sin^2 (x))/(x(√x)))dx =_((√x)=t)   ∫_0 ^∞  ((sin^2 (t^2 ))/t^3 )(2t)dt  =2∫_0 ^∞  ((sin^2 (t^2 ))/t^2 )dt =2{  [−(1/t)sin^2 (t^2 )]_0 ^∞ −∫_0 ^∞ −(1/t)×2sin(t^2 )2t)cos(t^2 )dt}  =2∫_0 ^∞ sin(2t^2 )dt =2∫_(−∞) ^(+∞)  sin(2t^2 )dt =−2Im(∫_(−∞) ^(+∞)  e^(−2it^2 ) dt)  ∫_(−∞) ^(+∞)  e^(−((√2)i)t^2 ) dt =_((√2)it=y)   ∫_(−∞) ^(+∞)  e^(−y^2 ) (dy/( (√2)i))  =((√π)/( (√2)e^((iπ)/4) ))=((√π)/( (√2)))e^(−((iπ)/4))  =((√π)/( (√2)))((1/( (√2)))−(i/( (√2))))=((√π)/2)−((i(√π))/2) ⇒  Υ=2×((√π)/2)=(√π)

Υ=0sin2(x)xxdx=x=t0sin2(t2)t3(2t)dt=20sin2(t2)t2dt=2{[1tsin2(t2)]001t×2sin(t2)2t)cos(t2)dt}=20sin(2t2)dt=2+sin(2t2)dt=2Im(+e2it2dt)+e(2i)t2dt=2it=y+ey2dy2i=π2eiπ4=π2eiπ4=π2(12i2)=π2iπ2Υ=2×π2=π

Terms of Service

Privacy Policy

Contact: info@tinkutara.com