All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 150828 by mnjuly1970 last updated on 15/Aug/21
∫0∞sin2(x)xxdx=?π
Answered by puissant last updated on 16/Aug/21
Q=∫0∞sin2xxxdx=∫0∞x−32sin2xdx=[11−32x−12sin2x]0∞−∫0∞−2x−12×2sinxcosxdx=2∫0∞sin2xxdx=x→u2∫0∞sin2u2u(2udu)=4∫0∞sin2u2du=−4im(∫0∞e−2iu2du)∵∵∵∫0∞e−(2iu)2du=2iu→z∫0ze−z2dz2i=12e−iπ4×π2=π22(22−i22)=π4−iπ4Q=−4im(∫0∞e−2iu2du)=−4(−π4)∵∴Q=π..............Lepuissant..........
Commented by mnjuly1970 last updated on 16/Aug/21
thankyousomuch...
Answered by mathmax by abdo last updated on 17/Aug/21
Υ=∫0∞sin2(x)xxdx=x=t∫0∞sin2(t2)t3(2t)dt=2∫0∞sin2(t2)t2dt=2{[−1tsin2(t2)]0∞−∫0∞−1t×2sin(t2)2t)cos(t2)dt}=2∫0∞sin(2t2)dt=2∫−∞+∞sin(2t2)dt=−2Im(∫−∞+∞e−2it2dt)∫−∞+∞e−(2i)t2dt=2it=y∫−∞+∞e−y2dy2i=π2eiπ4=π2e−iπ4=π2(12−i2)=π2−iπ2⇒Υ=2×π2=π
Terms of Service
Privacy Policy
Contact: info@tinkutara.com