Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 124608 by TANMAY PANACEA last updated on 04/Dec/20

∫_0 ^∞ sinx^p  dx  ∫_0 ^∞ ((sinx^p )/x^q )dx  collected question

0sinxpdx0sinxpxqdxcollectedquestion

Answered by Dwaipayan Shikari last updated on 04/Dec/20

∫_0 ^∞ sinx^p dx  =(1/(2i))∫_0 ^∞ e^(ix^p ) −e^(−ix^p ) dx               x^p =u  =(1/(2ip))∫_0 ^∞ (u)^((1−p)/p) e^(iu) −(1/(2ip))∫_0 ^∞ u^((1−p)/p) e^(−iu) dt          iu=−Ψ     iu=ϕ  =−(1/(2p))∫_0 ^∞ (((−Ψ)/i))^((1−p)/p) e^(−Ψ) dΨ + (1/(2p))∫_0 ^∞ ((ϕ/i))^((1−p)/p) e^(−ϕ) dϕ  =(((i)^((1/p)−1) )/(2p))Γ((1/p))+(((−i)^((1/p)−1) )/(2p))Γ((1/p))  (1/(2p))Γ((1/p))((1/i)(e^((π/(2p))i) −e^(−(π/(2p))i) ))=((Γ((1/p))sin((π/(2p))))/p)=Γ((1/p)+1)sin((π/(2p)))

0sinxpdx=12i0eixpeixpdxxp=u=12ip0(u)1ppeiu12ip0u1ppeiudtiu=Ψiu=φ=12p0(Ψi)1ppeΨdΨ+12p0(φi)1ppeφdφ=(i)1p12pΓ(1p)+(i)1p12pΓ(1p)12pΓ(1p)(1i(eπ2pieπ2pi))=Γ(1p)sin(π2p)p=Γ(1p+1)sin(π2p)

Commented by TANMAY PANACEA last updated on 04/Dec/20

excellent

excellent

Answered by mathmax by abdo last updated on 04/Dec/20

∫_0 ^∞  ((sin(x^p ))/x^q )dx =−Im(∫_0 ^∞  (e^(−ix^p ) /x^q )dx) but  ∫_0 ^∞  (e^(−ix^p ) /x^q )dx =_(ix^p =t) (−i)^p    ∫_0 ^∞     (e^(−t) /(((−it)^(1/p) )^q )) (1/p)t^((1/p)−1)  dt  =(1/p)e^(−((ipπ)/2))  ×∫_0 ^∞ (t^((1/p)−1) /((e^(−((iπ)/2)) )^(q/p)  t^(q/p) ))e^(−t) dt =(1/p)e^(−((ipπ)/2))  e^((iqπ)/(2p))  ∫_0 ^∞  t^((1/p)−(q/p)−1)  e^(−t)  dt  =(1/p) e^(i{((qπ)/(2p))−((pπ)/2)})   Γ(((1−q)/p))   (so o<q<1)  =(1/p){cos(((qπ)/(2p))−((pπ)/2))+isin(((qπ)/(2p))−((pπ)/2))}Γ(((1−q)/p)) ⇒  ∫_0 ^∞   ((sin(x^p ))/x^q )dx =−(1/p)sin(((qπ)/(2p))−((pπ)/2))Γ(((1−q)/p))  =(1/p)sin(((pπ)/2)−((qπ)/(2p)))×Γ(((1−q)/p))

0sin(xp)xqdx=Im(0eixpxqdx)but0eixpxqdx=ixp=t(i)p0et((it)1p)q1pt1p1dt=1peipπ2×0t1p1(eiπ2)qptqpetdt=1peipπ2eiqπ2p0t1pqp1etdt=1pei{qπ2ppπ2}Γ(1qp)(soo<q<1)=1p{cos(qπ2ppπ2)+isin(qπ2ppπ2)}Γ(1qp)0sin(xp)xqdx=1psin(qπ2ppπ2)Γ(1qp)=1psin(pπ2qπ2p)×Γ(1qp)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com