Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 146621 by 777316 last updated on 14/Jul/21

∫_0 ^( ∞)  ((xsin(4x))/(9 + 4x^2 ))dx =

0xsin(4x)9+4x2dx=

Answered by mathmax by abdo last updated on 14/Jul/21

Ψ=∫_0 ^∞  ((xsin(4x))/(4x^2  +9)) ⇒Ψ=_(2x=3z)   ∫_0 ^∞   ((3zsin(4((3z)/2)))/(2.9(1+z^2 ))) (3/2)dz  =(1/4)∫_0 ^∞  ((zsin(6z))/(z^2  +1))dz =(1/8)∫_(−∞) ^(+∞)  ((zsin(6z))/(z^2  +1))dz =(1/8)Im(∫_(−∞) ^(+∞)  ((ze^(6iz) )/(z^2  )1))dz)  let ϕ(z)=((ze^(6iz) )/(z^2  +1)) ⇒ϕ(z)=((ze^(6iz) )/((z−i)(z+i)))  residus th.⇒∫_R ϕ(z)dz=2iπRes(ϕ,i)  Res(ϕ,i)=((ie^(−6) )/(2i)) ⇒∫_R ϕ(z)dz=2iπ.((ie^(−6) )/(2i))=((iπ)/e^6 ) ⇒  Ψ=(1/8)×(π/e^6 )=(π/(8e^6 ))

Ψ=0xsin(4x)4x2+9Ψ=2x=3z03zsin(43z2)2.9(1+z2)32dz=140zsin(6z)z2+1dz=18+zsin(6z)z2+1dz=18Im(+ze6izz2)1dz)letφ(z)=ze6izz2+1φ(z)=ze6iz(zi)(z+i)residusth.Rφ(z)dz=2iπRes(φ,i)Res(φ,i)=ie62iRφ(z)dz=2iπ.ie62i=iπe6Ψ=18×πe6=π8e6

Answered by KINMATICS last updated on 14/Jul/21

∫ ((xsin4x)/(9+4x^2 ))dx=∫sin4x.(x/((2x)^2 -(3i)^2 ))dx  ∫ ((xsin4x)/(9+4x^2 ))dx=∫sin4x.(1/4)((1/((2x+3i)))+(1/(2x-3i)))dx  ∫ ((xsin4x)/(9+4x^2 ))dx=(1/2)∫((sin4x)/((4x+6i)))dx+(1/2)∫((sin4x)/(4x-6i))dx  For ∫((sin4x)/(4x+6i))dx, let 4x+6i=u,4x=u-6i, dx=(du/4)  for ∫((sin4x)/(4x-6i))dx, let  4x-6i=y,  4x=y+6i, dx=(dy/4)  ⇒∫((sin4xdx)/(4x^2 +9))=(1/8)∫((sin(u-6i))/u)du+(1/8)∫((sin(y+6i))/y)dy    I=(1/8)∫((sin(u)cos(6i)-cos(u)sin(6i))/u)du+           (1/8)∫((sin(y)cos(6i)+cos(y)sin(6i))/y)dy    I=((cos(6i))/8)∫((sin(u))/u)du-((sin(6i))/8)∫((cos(u))/u)du+       ((cos(6i))/8)∫((sin(y))/y)dy+((sin(6i))/8)∫((cos(y))/y)dy     I= ((cos(6i))/8)Si(u)−((sin(6i))/8)Ci(u)+              ((cos(6i))/8)Si(y)+((sin(6i))/8)Ci(y)+C     I=((cos(6i))/8)Si(4x+6i)-((sin(6i))/8)Ci(4x+6i)                   ((cos(6i))/8)Si(4x-6i)+((sin(6i))/8)Ci(4x-6i)+C    By: Kin Tom  contact        www.hppt://kintom077∂gmail.com

xsin4x9+4x2dx=sin4x.x(2x)2(3i)2dxxsin4x9+4x2dx=sin4x.14(1(2x+3i)+12x3i)dxxsin4x9+4x2dx=12sin4x(4x+6i)dx+12sin4x4x6idxForsin4x4x+6idx,let4x+6i=u,4x=u6i,dx=du4forsin4x4x6idx,let4x6i=y,4x=y+6i,dx=dy4sin4xdx4x2+9=18sin(u6i)udu+18sin(y+6i)ydyI=18sin(u)cos(6i)cos(u)sin(6i)udu+18sin(y)cos(6i)+cos(y)sin(6i)ydyI=cos(6i)8sin(u)udusin(6i)8cos(u)udu+cos(6i)8sin(y)ydy+sin(6i)8cos(y)ydyI=cos(6i)8Si(u)sin(6i)8Ci(u)+cos(6i)8Si(y)+sin(6i)8Ci(y)+CI=cos(6i)8Si(4x+6i)sin(6i)8Ci(4x+6i)cos(6i)8Si(4x6i)+sin(6i)8Ci(4x6i)+CBy:KinTomcontactwww.hppt://kintom077gmail.com

Terms of Service

Privacy Policy

Contact: info@tinkutara.com