All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 101833 by bobhans last updated on 05/Jul/20
∫−111+x1−xdx?
Answered by Dwaipayan Shikari last updated on 05/Jul/20
∫−111+x1−x2dx=∫−1111−x2+x1−x2=[sin−1x]−11−12∫−11−2x1−x2dx=π−12[1−x2]−11=π+0=π
Answered by john santu last updated on 05/Jul/20
set1+x1−x=s→dx=4s(s2+1)2dsI=∫∞04s2(s2+1)2ds[byparts]{u=sdv=4sds(s2+1)2I=−2.∣ss2+1∣0∞−∫−2dss2+1I=0+[2arctan(s)]0∞I=2(π2)=π(JS⊛)
Answered by mathmax by abdo last updated on 05/Jul/20
A=∫−111+x1−xdxchangementx=costgiveA=−∫0π1+cost1−cost(−sint)dt=∫0π2cos2(t2)2sin2(t2)sintdt=∫0πcos(t2)sin(t2)×2sin(t2)cos(t2)dt=2∫0πcos2(t2)dt=∫0π(1+cost)dt=π+∫0πcostdt=π+[sint]0π=π+0⇒A=π
Terms of Service
Privacy Policy
Contact: info@tinkutara.com