Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 174341 by behi834171 last updated on 31/Jul/22

    1.∫_(    1) ^(          2)  (√(x+(√(x−1)) )) dx=?       2.   ∫_(     0) ^(        (𝛑/2))   ((2sinx+4cosx)/(sinx+cosx))  dx=?

1.21x+x1dx=?2.π202sinx+4cosxsinx+cosxdx=?

Commented by mnjuly1970 last updated on 30/Jul/22

 2.(   3π/2 )

2.(3π/2)

Answered by MJS_new last updated on 30/Jul/22

1.  ∫(√(x+(√(x−1))))dx=       [t=(√(x−1))+(1/2) → dx=(2t−1)dt]  =(1/2)∫(2t−1)(√(4t^2 +3))dt=       [u=((2t+(√(4t^2 +3)))/( (√3))) → dt=((√(4t^2 +3))/(2u))du]  =∫(((3(√3))/(32))u^2 −(3/(16))u+((3(√3))/(32))−(3/8)u^(−1) −((3(√3))/(32))u^(−2) −(3/(16))u^(−3) −((3(√3))/(32))u^(−4) )du  the rest is easy

1.x+x1dx=[t=x1+12dx=(2t1)dt]=12(2t1)4t2+3dt=[u=2t+4t2+33dt=4t2+32udu]=(3332u2316u+333238u13332u2316u33332u4)dutherestiseasy

Commented by behi834171 last updated on 30/Jul/22

very nice!   thank you so much dear master.

verynice!thankyousomuchdearmaster.

Answered by Frix last updated on 30/Jul/22

∫_0 ^(π/2)  ((2sin x +4cos x)/(sin x +cos x))dx=  =3∫_0 ^(π/2) dx−∫_0 ^(π/2) ((sin x −cos x)/(sin x +cos x))dx  3∫_0 ^(π/2) dx=((3π)/2)  −∫_0 ^(π/2) ((sin x −cos x)/(sin x +cos x))dx=  =∫_0 ^(π/2) ((d[sin x +cos x])/(sin x +cos x))=  =[ln ∣sin x +cos x∣]_0 ^(π/2) =0  ⇒ answer is ((3π)/2)

π/202sinx+4cosxsinx+cosxdx==3π/20dxπ/20sinxcosxsinx+cosxdx3π/20dx=3π2π/20sinxcosxsinx+cosxdx==π/20d[sinx+cosx]sinx+cosx==[lnsinx+cosx]0π/2=0answeris3π2

Commented by behi834171 last updated on 30/Jul/22

thank you very much sir.  your answer is true.

thankyouverymuchsir.youransweristrue.

Answered by behi834171 last updated on 31/Jul/22

let: x−1=t^2 ⇒dx=2tdt  I=∫2t(√(t^2 +1+t))dt=∫(2t+1−1)(√(t^2 +t+1))dt=  =∫(2t+1)(√(t^2 +t+1))dt−∫(√(t^2 +t+1))dt=I_1 +I_2   I_1 =(2/3)(t^2 +t+1)^(3/2) +const.  I_2 =∫(√((t+(1/2))^2 +(((√3)/2))^2 ))dt=  =((2t+1)/4)(√(t^2 +t+1))+(3/8)sinh^(−1) (((2t+1)/( (√3))))+const.  ⇒I=(2/3)(x+(√(x−1)))^(3/2) +(((2(√(x−1))+1)/4)).(√(x+(√(x−1))))+  +  (3/8)sinh^(−1)  (((2(√(x−1))+1)/( (√3))))+const.  ■  [I_1 =2(√3)−(2/3)=((6(√3)−2)/3)  I_2 =((3(√(3 ))−1)/4)+(3/(10))=((15(√3)+1)/(20))  ⇒I=I_1 +I_2 =((165(√3)−37)/(60))]

let:x1=t2dx=2tdtI=2tt2+1+tdt=(2t+11)t2+t+1dt==(2t+1)t2+t+1dtt2+t+1dt=I1+I2I1=23(t2+t+1)32+const.I2=(t+12)2+(32)2dt==2t+14t2+t+1+38sinh1(2t+13)+const.I=23(x+x1)32+(2x1+14).x+x1++38sinh1(2x1+13)+const.[I1=2323=6323I2=3314+310=153+120I=I1+I2=16533760]

Commented by peter frank last updated on 01/Aug/22

thanks

thanks

Terms of Service

Privacy Policy

Contact: info@tinkutara.com