All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 101793 by Dwaipayan Shikari last updated on 04/Jul/20
∫12logu(u−1)(u−1+1)du
Answered by mathmax by abdo last updated on 05/Jul/20
I=∫12ln(u)u−1(u−1+1)duchangementu−1=xgiveu−1=x2⇒I=∫01ln(1+x2)x(x+1)(2x)dx=2∫01ln(1+x2)1+xdx=2∫01ln(1+x2)∑n=0∞(−1)nxn=2∑n=0∞(−1)n∫01xnln(1+x2)dx=2∑n=0∞(−1)nAnwithAn=∫01xnln(1+x2)dxbypartswegetAn=[xn+1n+1ln(1+x2)]01−∫01xn+1n+1×2x1+x2dx=ln(2)n+1−2n+1∫01xn+21+x2dx∫01xn+21+x2dx=∫01(x2+1−1)xn1+x2dx=∫01xndx−∫01xnx2+1dx=1n+1−∫01xnx2+1dxwehave∫01xnx2+1dx=∫01xn(∑k=0∞(−1)kx2k)=∑k=0∞(−1)k∫01xn+2kdx=∑k=0∞(−1)k×1n+2k+1⇒An=ln2n+1−2n+1{1n+1−∑k=0∞(−1)k2k+n+1}=ln2n+1−2(n+1)2−2n+1∑k=0∞(−1)k2k+n+1⇒I=2ln2∑n=0∞(−1)nn+1−4∑n=0∞(−1)n(n+1)2−4∑n=0∞(−1)nn+1(∑k=0∞(−1)k2k+n+1)∑n=0∞(−1)nn+1=∑n=1∞(−1)n−1n=ln(2)∑n=0∞(−1)n(n+1)2=∑n=1∞(−1)n−1n2=−∑n=1∞(−1)nn2=−{21−2−1)ξ(2)=−(−12)×π26=π212∑n=0∞(−1)nn+1∑k=0∞(−1)k2k+n+1=∑n=0∞∑k=0∞(−1)n+k(n+1)(2k+n+1)...becontinued...
Commented by 1549442205 last updated on 06/Jul/20
Thankyousir.Please,canyoushowmeaboutthefunctionξ(n)thatusedinsolution?
Terms of Service
Privacy Policy
Contact: info@tinkutara.com