Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 101793 by Dwaipayan Shikari last updated on 04/Jul/20

∫_1 ^2 ((logu)/(((√(u−1)))((√(u−1))+1)))du

12logu(u1)(u1+1)du

Answered by mathmax by abdo last updated on 05/Jul/20

I =∫_1 ^(2 )  ((ln(u))/((√(u−1))((√(u−1))+1)))du  changement (√(u−1))=x give u−1 =x^2  ⇒  I =∫_0 ^1   ((ln(1+x^2 ))/(x(x+1))) (2x)dx =2 ∫_0 ^1  ((ln(1+x^2 ))/(1+x)) dx  =2 ∫_0 ^1  ln(1+x^2 )Σ_(n=0) ^∞ (−1)^n  x^n  =2 Σ_(n=0) ^∞  (−1)^n  ∫_0 ^1  x^n  ln(1+x^2 )dx  =2 Σ_(n=0) ^∞  (−1)^n  A_n   with A_n =∫_0 ^1  x^n ln(1+x^2 )dx  by parts we get  A_n =[(x^(n+1) /(n+1))ln(1+x^2 )]_0 ^1  −∫_0 ^1  (x^(n+1) /(n+1))×((2x)/(1+x^2 ))dx  =((ln(2))/(n+1))−(2/(n+1))∫_0 ^1   (x^(n+2) /(1+x^2 ))dx   ∫_0 ^1  (x^(n+2) /(1+x^2 ))dx =∫_0 ^1  (((x^2 +1−1)x^n )/(1+x^2 ))dx =∫_0 ^1  x^n  dx−∫_0 ^1  (x^n /(x^2  +1))dx  =(1/(n+1))−∫_0 ^(1 )  (x^n /(x^2  +1))dx  we have  ∫_0 ^1  (x^n /(x^2  +1))dx =∫_0 ^1  x^n (Σ_(k=0) ^∞  (−1)^k  x^(2k) )  =Σ_(k=0) ^∞  (−1)^k  ∫_0 ^1  x^(n+2k)  dx =Σ_(k=0) ^∞  (−1)^k  ×(1/(n+2k+1)) ⇒  A_n =((ln2)/(n+1))−(2/(n+1)){(1/(n+1))−Σ_(k=0) ^∞  (((−1)^k )/(2k+n+1))}  =((ln2)/(n+1))−(2/((n+1)^2 )) −(2/(n+1)) Σ_(k=0) ^∞  (((−1)^k )/(2k+n+1)) ⇒  I =2ln2 Σ_(n=0) ^∞  (((−1)^n )/(n+1))−4 Σ_(n=0) ^∞  (((−1)^n )/((n+1)^2 )) −4 Σ_(n=0) ^∞  (((−1)^n )/(n+1))(Σ_(k=0) ^∞  (((−1)^k )/(2k+n+1)))  Σ_(n=0) ^∞  (((−1)^n )/(n+1)) =Σ_(n=1) ^∞  (((−1)^(n−1) )/n) =ln(2)  Σ_(n=0) ^∞  (((−1)^n )/((n+1)^2 )) =Σ_(n=1) ^∞  (((−1)^(n−1) )/n^2 ) =−Σ_(n=1) ^∞  (((−1)^n )/n^2 ) =−{2^(1−2) −1)ξ(2)  =−(−(1/2))×(π^2 /6) =(π^2 /(12))  Σ_(n=0) ^∞  (((−1)^n )/(n+1))Σ_(k=0) ^∞  (((−1)^k )/(2k+n+1)) =Σ_(n=0) ^∞  Σ_(k=0) ^∞  (((−1)^(n+k) )/((n+1)(2k+n+1)))  ...be continued...

I=12ln(u)u1(u1+1)duchangementu1=xgiveu1=x2I=01ln(1+x2)x(x+1)(2x)dx=201ln(1+x2)1+xdx=201ln(1+x2)n=0(1)nxn=2n=0(1)n01xnln(1+x2)dx=2n=0(1)nAnwithAn=01xnln(1+x2)dxbypartswegetAn=[xn+1n+1ln(1+x2)]0101xn+1n+1×2x1+x2dx=ln(2)n+12n+101xn+21+x2dx01xn+21+x2dx=01(x2+11)xn1+x2dx=01xndx01xnx2+1dx=1n+101xnx2+1dxwehave01xnx2+1dx=01xn(k=0(1)kx2k)=k=0(1)k01xn+2kdx=k=0(1)k×1n+2k+1An=ln2n+12n+1{1n+1k=0(1)k2k+n+1}=ln2n+12(n+1)22n+1k=0(1)k2k+n+1I=2ln2n=0(1)nn+14n=0(1)n(n+1)24n=0(1)nn+1(k=0(1)k2k+n+1)n=0(1)nn+1=n=1(1)n1n=ln(2)n=0(1)n(n+1)2=n=1(1)n1n2=n=1(1)nn2={2121)ξ(2)=(12)×π26=π212n=0(1)nn+1k=0(1)k2k+n+1=n=0k=0(1)n+k(n+1)(2k+n+1)...becontinued...

Commented by 1549442205 last updated on 06/Jul/20

Thank you sir.Please,can you show me  about the function ξ(n) that used in solution?

Thankyousir.Please,canyoushowmeaboutthefunctionξ(n)thatusedinsolution?

Terms of Service

Privacy Policy

Contact: info@tinkutara.com