All Questions Topic List
Others Questions
Previous in All Question Next in All Question
Previous in Others Next in Others
Question Number 192341 by Mastermind last updated on 15/May/23
1)Findthesignofoddoreven(orpality)ofpermutationθ=(12345678)2)provethatanypermutationθ:S→SwhereSisafinitesetcanbewrittenasaproductofdisjointcyclehelp!
Answered by aleks041103 last updated on 15/May/23
1)θ=(12345678)==(12)(23)(34)(45)(56)(67)(78)(ab)isodd⇒sgn(θ)=sgn(∏7k=1(kk+1))==∏7k=1sgn((kk+1))=(−1)7=−1=sgn(θ)⇒θisodd2)Wewillprovethagforeverys∈Sn,scanberepresentedasaproductofcycles.Proofbyinduction:n=1:s=id=(1)n=2:s={id=(1)(2)(1221)=(12)n=m:let∀s′∈Smcanberepr.asaproductofdisjointcyclesn=m+1:Lets∈Sn1stcase―:s(n)=n⇒s=(123...n−1n∗∗∗...∗n)⇒s≡s′=(123...n−1∗∗∗...∗)∈SmByind.hyp.s′=c1...cr,whereciisacycle.⇒s=c1...cr.Wenotethatn∉c1,...,cr2ndcase―:s(n)=k≠n,lets″=(kn)s⇒((kn)s)(n)=(kn)(s(n))=(kn)(k)=n⇒s″fallsunderthe1stcase.⇒s″=(kn)s=c1...cr⇒s=(kn)c1c2...crIfk∉c1,...,cr,then(kn)isdisjointwithc1,...,crandwearedone.Else,letk∈cp.Sincec1,...,craredisjointtheycommute.⇒s=(nk)cpc1...crcpisoftheform(∗...∗k∗...∗)=(k∗...∗)⇒s=(nk)(k∗...∗)c1...cr==(nk∗...∗)c1...cr=cp′c1...crObviously,cp′,c1,...,craredisjoint.Wearedone!⇒Byourinductionhypothesis,weprovedthateveryelementofafinitesymmetricgroupcanberepresentedasaproductofdisjointcycles.
Commented by Mastermind last updated on 18/May/23
Idoreallyappreciate
Terms of Service
Privacy Policy
Contact: info@tinkutara.com