Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 192341 by Mastermind last updated on 15/May/23

1) Find the sign of odd or even (or pality)  of permutation θ=(1 2 3 4 5 6 7 8)    2) prove that any permutation  θ:S→S where S is a finite set can be  written as a product of disjoint  cycle    help!

1)Findthesignofoddoreven(orpality)ofpermutationθ=(12345678)2)provethatanypermutationθ:SSwhereSisafinitesetcanbewrittenasaproductofdisjointcyclehelp!

Answered by aleks041103 last updated on 15/May/23

1) θ=(1 2 3 4 5 6 7 8)=  =(1 2)(2 3)(3 4)(4 5)(5 6)(6 7)(7 8)    (a b) is odd  ⇒sgn(θ)=sgn(Π_(k=1) ^7 (k k+1))=  =Π_(k=1) ^7 sgn((k k+1))=(−1)^7 =−1=sgn(θ)  ⇒θ is odd    2)We will prove thag for every s∈S_n , s can  be represented as a product of cycles.  Proof by induction:  n=1: s=id=(1)  n=2: s= { ((id=(1)(2))),(( (((1 2)),((2 1)) )=(1 2))) :}  n=m: let ∀s′∈S_m  can be repr. as a product  of  disjoint cycles     n=m+1:  Let s∈S_n   1st case: s(n)=n ⇒ s= (((1 2 3 ... n−1 n)),((∗ ∗ ∗ ...     ∗    n)) )  ⇒s≡s′= (((1 2 3 ... n−1)),((∗ ∗ ∗ ...     ∗ )) ) ∈S_m   By ind. hyp. s′=c_1 ...c_r , where c_i  is a cycle.  ⇒s=c_1 ...c_r .  We note that n∉c_1 ,...,c_r   2nd case: s(n)=k≠n, let s′′=(k n)s  ⇒((k n)s)(n)=(k n)(s(n))=(k n)(k)=n  ⇒s′′ falls under the 1st case.  ⇒s′′=(k n)s=c_1 ...c_r   ⇒s=(k n)c_1 c_2 ...c_r   If k∉c_1 ,...,c_r , then (k n) is disjoint with  c_1 ,...,c_r  and we are done.  Else, let k∈c_p . Since c_1 ,...,c_r  are disjoint  they commute.  ⇒s=(n k)c_p c_1 ...c_r   c_p  is of the form (∗ ... ∗ k ∗ ... ∗)=(k ∗ ... ∗)  ⇒s=(n k)(k ∗ ... ∗)c_1 ...c_r =  =(n k ∗ ... ∗)c_1 ...c_r =c_p ′c_1 ...c_r   Obviously, c_p ′,c_1 ,...,c_r  are disjoint.  We are done!    ⇒By our induction hypothesis,  we proved that every element of a finite  symmetric group can be represented as  a product of disjoint cycles.

1)θ=(12345678)==(12)(23)(34)(45)(56)(67)(78)(ab)isoddsgn(θ)=sgn(7k=1(kk+1))==7k=1sgn((kk+1))=(1)7=1=sgn(θ)θisodd2)WewillprovethagforeverysSn,scanberepresentedasaproductofcycles.Proofbyinduction:n=1:s=id=(1)n=2:s={id=(1)(2)(1221)=(12)n=m:letsSmcanberepr.asaproductofdisjointcyclesn=m+1:LetsSn1stcase:s(n)=ns=(123...n1n...n)ss=(123...n1...)SmByind.hyp.s=c1...cr,whereciisacycle.s=c1...cr.Wenotethatnc1,...,cr2ndcase:s(n)=kn,lets=(kn)s((kn)s)(n)=(kn)(s(n))=(kn)(k)=nsfallsunderthe1stcase.s=(kn)s=c1...crs=(kn)c1c2...crIfkc1,...,cr,then(kn)isdisjointwithc1,...,crandwearedone.Else,letkcp.Sincec1,...,craredisjointtheycommute.s=(nk)cpc1...crcpisoftheform(...k...)=(k...)s=(nk)(k...)c1...cr==(nk...)c1...cr=cpc1...crObviously,cp,c1,...,craredisjoint.Wearedone!Byourinductionhypothesis,weprovedthateveryelementofafinitesymmetricgroupcanberepresentedasaproductofdisjointcycles.

Commented by Mastermind last updated on 18/May/23

I do really appreciate

Idoreallyappreciate

Terms of Service

Privacy Policy

Contact: info@tinkutara.com