Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 37991 by Fawomath last updated on 20/Jun/18

1. Find the sum      s_n =1+2x+3x^2 +4x^3 +...+nx^(n−1)   Hence,or otherwise, find the sum      Σ_(k=1) ^n k.2^k   2. Simplify the following  i. Σ_(r=0) ^n (_(2r−1) ^(2n) )  ii.Σ_(r=0) ^n (−1)^r r(_r ^n )  iii.Σ_(r=0) ^n (−1)^r (1/(r+1))(_r ^n )  iv.Σ_(r=0) ^n (_(2r) ^(2n) )  v.Σ_(r=0) ^n (−1)^r (_(n−r) ^(n+1) )  3.Find the sum           Σ_(r=0) ^(n−k) (_k ^(n−r) ),   where k=0,1,2,3,...,n

1.Findthesumsn=1+2x+3x2+4x3+...+nxn1Hence,orotherwise,findthesumnk=1k.2k2.Simplifythefollowingi.nr=0(2r12n)ii.nr=0(1)rr(rn)iii.nr=0(1)r1r+1(rn)iv.nr=0(2r2n)v.nr=0(1)r(nrn+1)3.Findthesumnkr=0(knr),wherek=0,1,2,3,...,n

Commented by prof Abdo imad last updated on 21/Jun/18

1) let f(x)= 1+x +x^2  +...+x^n  =Σ_(k=0) ^n  x^k   ⇒f^′ (x)=Σ_(k=1) ^n  k x^(k−1)    but if x≠1  f(x)= ((x^(n+1)  −1)/(x−1)) ⇒f^′ (x)=((nx^(n+1) −(n+1)x^(n +1)  +1)/((x−1)^2 ))  so Σ_(k=1) ^n  kx^(k−1)  =((nx^(n+1) −(n+1)x^n  +1)/((x−1)^2 ))   if x =1   f^′ (x)= 1+2+3+...+n   ⇒f^′ (x)= ((n(n+1))/2)   let take x=2 ⇒Σ_(k=1) ^n k.2^(k−1) =n 2^(n+1) −(n+1)2^n  +1   Σ_(k=1) ^n  k .2^k  =n 2^(n+2)  −(n+1)2^(n+1)  +2 .  =4n 2^n −(2n+2)2^n  +2=(2n−2)2^n  +2  =(n−1)2^(n+1)  +2.

1)letf(x)=1+x+x2+...+xn=k=0nxkf(x)=k=1nkxk1butifx1f(x)=xn+11x1f(x)=nxn+1(n+1)xn+1+1(x1)2sok=1nkxk1=nxn+1(n+1)xn+1(x1)2ifx=1f(x)=1+2+3+...+nf(x)=n(n+1)2lettakex=2k=1nk.2k1=n2n+1(n+1)2n+1k=1nk.2k=n2n+2(n+1)2n+1+2.=4n2n(2n+2)2n+2=(2n2)2n+2=(n1)2n+1+2.

Commented by prof Abdo imad last updated on 21/Jun/18

2)ii let p(x)=Σ_(k=0) ^n  C_n ^k   x^k   we have  p(x)=(x+1)^n  ⇒ Σ_(k=0) ^n (−1)^k  C_n ^k =p(−1)=0

2)iiletp(x)=k=0nCnkxkwehavep(x)=(x+1)nk=0n(1)kCnk=p(1)=0

Commented by prof Abdo imad last updated on 21/Jun/18

iii let  p(x)= Σ_(k=0) ^n   C_n ^k  x^k   =(x+1)^n  ⇒  ∫ p(x)dx =Σ_(k=0) ^n  (1/(k+1)) C_n ^k  x^(k+1) +c   =(1/(n+1))(x+1)^(n+1)  +c  x=0 ⇒c=−(1/(n+1)) ⇒  Σ_(k=0) ^n   (x^(k+1) /(k+1)) C_n ^k  = (((x+1)^(n+1)  −1)/(n+1)) let take x=−1 ⇒    −Σ_(k=0) ^n  (((−1)^k )/(k+1)) C_n ^k   =(((x+1)^(n+1)  −1)/(n+1)) ⇒  Σ_(k=0) ^n  (((−1)^k )/(k+1)) C_n ^k    = ((1−(x+1)^(n+1) )/(n+1)) .

iiiletp(x)=k=0nCnkxk=(x+1)np(x)dx=k=0n1k+1Cnkxk+1+c=1n+1(x+1)n+1+cx=0c=1n+1k=0nxk+1k+1Cnk=(x+1)n+11n+1lettakex=1k=0n(1)kk+1Cnk=(x+1)n+11n+1k=0n(1)kk+1Cnk=1(x+1)n+1n+1.

Commented by prof Abdo imad last updated on 21/Jun/18

⇒ Σ_(k=0) ^n  (((−1)^k )/(k+1)) C_n ^k   = (1/(n+1)) .

k=0n(1)kk+1Cnk=1n+1.

Answered by ajfour last updated on 20/Jun/18

s_n =1+2x+3x^2 +4x^3 +....+nx^(n−1)   xs_n =     [x+2x^2 +3x^3 +....+(n−1)x^(n−1) +nx^n   (1−x)s_n =1+x+x^2 +...+x^(n−1) −nx^n   s_n =((1−x^n )/((1−x)^2 ))−((nx^n )/(1−x)) .

sn=1+2x+3x2+4x3+....+nxn1xsn=[x+2x2+3x3+....+(n1)xn1+nxn(1x)sn=1+x+x2+...+xn1nxnsn=1xn(1x)2nxn1x.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com