Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 214658 by ChantalYah last updated on 15/Dec/24

1) The function H is defined by H(x) =3cosh(x/3)+sinh(x/3).  Find the value of λ for which H(lnλ^3 )=4  2) Prove that ∫_2 ^4  ((6x+1)/((2x−3)(3x−2)))dx= ln 10.  3)Show that ((sinθ + sin2θ)/(1+ cosθ+ cos2θ))≡ tanθ  4) If z=cosθ+ i sinθ, Show that z+(1/z)=2cosθ and that  z^n +(1/z^n )=2cos nθ hence or otherwise show that   32cos^6 θ= cos 6θ +6cos 4θ + 15cos 2θ+ 10.                           Mr Hans

1)ThefunctionHisdefinedbyH(x)=3coshx3+sinhx3.FindthevalueofλforwhichH(lnλ3)=42)Provethat246x+1(2x3)(3x2)dx=ln10.3)Showthatsinθ+sin2θ1+cosθ+cos2θtanθ4)Ifz=cosθ+isinθ,Showthatz+1z=2cosθandthatzn+1zn=2cosnθhenceorotherwiseshowthat32cos6θ=cos6θ+6cos4θ+15cos2θ+10.MrHans

Answered by a.lgnaoui last updated on 16/Dec/24

2)∫_2 ^4  ((6x+1)/((2x−3)(3x−2)))dx=   ((6x+1)/((2x−3)(3x−2)))=(a/(2x−3))+(b/((3x−2)))  =(((3a+2b)x−(2a+3b))/((2x−3)(3x−2)))    { ((3a+2b=6    ×2)),((2a+3b=−1  ×−3)) :}    −5b=15    ⇒       a=4   b=−3       ∫_2 ^4  ((6x+1)/((2x−3)(3x+2)))=  ∫(4/(2x−3))dx−∫(3/(3x−2))dx    •2[ln(2x−3)]_2 ^4 −[ln(3x−2)    −(ln(3x−2)]_2 ^4 =  2[ln(5)−(ln10)+ln4=ln5+ln2=ln10    •3)((sin 𝛉+sin 2𝛉)/(1+cos 𝛉+cos 2𝛉))=((sin𝛉(1+2cos 𝛉) )/(cos 𝛉(1+2cos 𝛉)))     tan 𝛉      •4)if   z=cos 𝛉+isin 𝛉        z+(1/z)=cos 𝛉+isin 𝛉+((cos 𝛉−isin 𝛉)/1)     =2cos 𝛉     ⇒           z^n +(1/z^n )=2cos n𝛉   32cos 6𝛉=2^5 cos 6𝛉=2^4 ×(2cos 6𝛉)                    2^4 [(cos 6𝛉+isin 6𝛉)+(1/(cos 6𝛉+isin 6𝛉))     =2^5 (2cos^2 3𝛉−1)  cos 3𝛉=4cos^3 𝛉−3cos 𝛉   cos 6𝛉=2cos^2 3𝛉−1  =2cos^2 𝛉(4cos^2 𝛉−3)^2 −1    =2(16cos^6 𝛉−24cos^4 𝛉+9cos^2 𝛉)−1  soit     32cos^6 𝛉=cos 6𝛉+48cos^4 𝛉−18cos^2 𝛉+1    cos 4𝛉=2(2cos^2 𝛉−1)^2 −1  =2(4cos^4 𝛉+1−4cos^2 𝛉)−1  =8cos^4 𝛉−8cos^2 𝛉+1    ⇒  48cos^4 𝛉−18cos^2 𝛉  =6cos 4𝛉+30cos^2 𝛉  32cos^6 𝛉=cos 6𝛉+6cos 4𝛉+30cos^2 𝛉  =cos 6𝛉+6cos 4𝛉+15(cos 2𝛉)+10  i

2)246x+1(2x3)(3x2)dx=6x+1(2x3)(3x2)=a2x3+b(3x2)=(3a+2b)x(2a+3b)(2x3)(3x2){3a+2b=6×22a+3b=1×35b=15a=4b=3246x+1(2x3)(3x+2)=42x3dx33x2dx2[ln(2x3)]24[ln(3x2)(ln(3x2)]24=2[ln(5)(ln10)+ln4=ln5+ln2=ln103)sinθ+sin2θ1+cosθ+cos2θ=sinθ(1+2cosθ)cosθ(1+2cosθ)tanθ4)ifz=cosθ+isinθz+1z=cosθ+isinθ+cosθisinθ1=2cosθzn+1zn=2cosnθ32cos6θ=25cos6θ=24×(2cos6θ)24[(cos6θ+isin6θ)+1cos6θ+isin6θ=25(2cos23θ1)cos3θ=4cos3θ3cosθcos6θ=2cos23θ1=2cos2θ(4cos2θ3)21=2(16cos6θ24cos4θ+9cos2θ)1soit32cos6θ=cos6θ+48cos4θ18cos2θ+1cos4θ=2(2cos2θ1)21=2(4cos4θ+14cos2θ)1=8cos4θ8cos2θ+148cos4θ18cos2θ=6cos4θ+30cos2θ32cos6θ=cos6θ+6cos4θ+30cos2θ=cos6θ+6cos4θ+15(cos2θ)+10i

Answered by MathematicalUser2357 last updated on 16/Dec/24

ln λ^3 =3ln λ  using hyperbolic trigonometric function idenities  H(x)=3×((e^(x/3) −e^(−x/3) )/2)+((e^(x/3) +e^(−x/3) )/2)  H(x)=(((3e^(x/3) −3e^(−x/3) )+(e^(x/3) +e^(−x/3) ))/2)=((4e^(x/3) −2e^(−x/3) )/2)   determinant (((H(x)=2e^(x/3) −e^(−x/3) , H(3ln λ)=2λ−(1/λ))))  So 2λ−(1/λ)=4  2λ^2 −4λ−1=0  λ=((4±(√(4^2 +4×2×1)))/(2×2))  λ=((4±(√(24)))/4)=((4±2(√6))/4)   determinant (((λ=2±(√6))))Question 1 is easy though

lnλ3=3lnλusinghyperbolictrigonometricfunctionidenitiesH(x)=3×ex/3ex/32+ex/3+ex/32H(x)=(3ex/33ex/3)+(ex/3+ex/3)2=4ex/32ex/32H(x)=2ex/3ex/3,H(3lnλ)=2λ1λSo2λ1λ=42λ24λ1=0λ=4±42+4×2×12×2λ=4±244=4±264λ=2±6Question1iseasythough

Commented by MathematicalUser2357 last updated on 17/Dec/24

Even though it′s not a solution.

Eventhoughitsnotasolution.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com