Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 53271 by Abdo msup. last updated on 19/Jan/19

1)calculate∫_0 ^∞    e^(−xt^2 ) dt  with x>0  2) find the value of ∫_0 ^∞   ((e^(−t^2 )  −e^(−2t^2 ) )/t^2 ) dt  by using  fubinni theorem .

1)calculate0ext2dtwithx>02)findthevalueof0et2e2t2t2dtbyusingfubinnitheorem.

Commented by maxmathsup by imad last updated on 22/Jan/19

1) we have ∫_0 ^∞  e^(−xt^2 ) dt =_(t(√x)=u)   ∫_0 ^∞   e^(−u^2 ) (du/(√x)) =(1/(√x)) ∫_0 ^∞  e^(−u^2 ) du  =(1/(√x)) ((√π)/2) =((√π)/(2(√x)))  2) we have ∫_1 ^2   ((√π)/(2(√x))) dx =(√π)[(√x)]_1 ^2 =(√π)((√2)−1)  but  ∫_1 ^2  ((√π)/(2(√x))) dx =∫_1 ^2 (∫_0 ^∞  e^(−xt^2 ) dt)dx =∫_0 ^∞  ( ∫_1 ^2  e^(−xt^2 ) dx)dt (by fubini)  =∫_0 ^∞  (  [−(1/t^2 ) e^(−xt^2 ) ]_(x=1) ^(x=2) )dt =∫_0 ^∞  ((e^(−t^2 )  −e^(−2t^2 ) )/t^2 ) dt ⇒  ∫_0 ^∞   ((e^(−t^2 ) −e^(−2t^2 ) )/t^2 ) dt =(√π)((√2)−1)

1)wehave0ext2dt=tx=u0eu2dux=1x0eu2du=1xπ2=π2x2)wehave12π2xdx=π[x]12=π(21)but12π2xdx=12(0ext2dt)dx=0(12ext2dx)dt(byfubini)=0([1t2ext2]x=1x=2)dt=0et2e2t2t2dt0et2e2t2t2dt=π(21)

Commented by maxmathsup by imad last updated on 22/Jan/19

anther method leta>0 and b>0and f(a,b) =∫_0 ^∞   ((e^(−ax^2 ) −e^(−bx^2 ) )/x^2 ) dx ⇒(∂f/∂a)(a,b)=−∫_0 ^∞  e^(−ax^2 ) dx  =−∫_0 ^∞   e^(−((√a)x)^2 ) dx =_((√a)x =t)    −∫_0 ^∞   e^(−t^2 ) (dt/(√a))  =−(1/(√a)) ((√π)/2) =−((√π)/(2(√a))) ⇒f(a,b)= −(√π)∫  (da/(2(√a))) =−(√π)(√a) +c  c=f(0,b) =∫_0 ^∞   ((1−e^(−bx^2 ) )/x^2 ) dx =ϕ(b) ⇒ϕ^′ (b)=∫_0 ^∞  e^(−bx^2 ) dx =((√π)/(2(√b))) ⇒  ϕ(b) =(√π)(√(b )) +c_0   but ϕ(0) =c_0  ⇒ϕ(b)=(√π)(√b) ⇒f(a,b)=−(√π)(√a)+(√π)(√b)  =(√π)((√(b ))−(√a))  finally ∫_0 ^∞   ((e^(−t^2 ) −e^(−2t^2 ) )/t^2 )dt =f(1,2) =(√π)((√2)−1).

anthermethodleta>0andb>0andf(a,b)=0eax2ebx2x2dxfa(a,b)=0eax2dx=0e(ax)2dx=ax=t0et2dta=1aπ2=π2af(a,b)=πda2a=πa+cc=f(0,b)=01ebx2x2dx=φ(b)φ(b)=0ebx2dx=π2bφ(b)=πb+c0butφ(0)=c0φ(b)=πbf(a,b)=πa+πb=π(ba)finally0et2e2t2t2dt=f(1,2)=π(21).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com