All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 53271 by Abdo msup. last updated on 19/Jan/19
1)calculate∫0∞e−xt2dtwithx>02)findthevalueof∫0∞e−t2−e−2t2t2dtbyusingfubinnitheorem.
Commented by maxmathsup by imad last updated on 22/Jan/19
1)wehave∫0∞e−xt2dt=tx=u∫0∞e−u2dux=1x∫0∞e−u2du=1xπ2=π2x2)wehave∫12π2xdx=π[x]12=π(2−1)but∫12π2xdx=∫12(∫0∞e−xt2dt)dx=∫0∞(∫12e−xt2dx)dt(byfubini)=∫0∞([−1t2e−xt2]x=1x=2)dt=∫0∞e−t2−e−2t2t2dt⇒∫0∞e−t2−e−2t2t2dt=π(2−1)
anthermethodleta>0andb>0andf(a,b)=∫0∞e−ax2−e−bx2x2dx⇒∂f∂a(a,b)=−∫0∞e−ax2dx=−∫0∞e−(ax)2dx=ax=t−∫0∞e−t2dta=−1aπ2=−π2a⇒f(a,b)=−π∫da2a=−πa+cc=f(0,b)=∫0∞1−e−bx2x2dx=φ(b)⇒φ′(b)=∫0∞e−bx2dx=π2b⇒φ(b)=πb+c0butφ(0)=c0⇒φ(b)=πb⇒f(a,b)=−πa+πb=π(b−a)finally∫0∞e−t2−e−2t2t2dt=f(1,2)=π(2−1).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com