All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 40890 by abdo.msup.com last updated on 28/Jul/18
1)calculate∫1n+11n[1t−[1t]]dt2)provethat∫01[1t−[1t]]dt=1−γγisconstantnumberofeuler
Commented by maxmathsup by imad last updated on 01/Aug/18
1)letAn=∫1n+11n{1t−[1t]}dtchangement1t=xgiveAn=−∫nn+1{x−[x]}(−dxx2)=∫nn+1{1x−[x]x2}dx=∫nn+1dxx−∫nn+1nx2dx=[ln(x)]nn+1+n[1x]nn+1=ln(n+1)−ln(n)+n{1n+1−1n}=ln(n+1)−ln(n)+nn+1−1
2)letI=∫01{1t−[1t]}dtchangement1t=xgiveI=−∫1+∞{x−[x]}(−dxx2)=∫1+∞x−[x]x2dx=∑n=1∞∫nn+1x−[x]x2dx=∑n=1∞Anbut∑n=1∞An=limn→+∞∑k=1nAk∑k=1nAk=∑k=1n{ln(k+1)−ln(k)}−∑k=1n1k+1=ln(n+1)−∑k=2n+11k=ln(n+1)−(Hn+1−1)=1−(Hn+1−ln(n+1))butHn+1=ln(n+1)+γ+o(1n)⇒Hn+1−ln(n+1)=γ+o(1n)⇒∑k=1nAk=1−γ+o(1n)⇒limn→+∞∑k=1nAk=1−γ=I.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com