Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 53967 by maxmathsup by imad last updated on 27/Jan/19

1)calculate A_t =∫_0 ^∞  e^(−xt)  sinxdx  with x>0  2) by using Fubuni theorem find the value of ∫_0 ^∞   ((sinx)/x)dx .

1)calculateAt=0extsinxdxwithx>02)byusingFubunitheoremfindthevalueof0sinxxdx.

Commented by maxmathsup by imad last updated on 28/Jan/19

1) we have A_t =Im(∫_0 ^∞  e^(−xt)  e^(ix) dx) =Im(∫_0 ^∞  e^((i−t)x) dx)  ∫_0 ^∞   e^((i−t)x) dx =[(1/(i−x)) e^((i−t)x) ]_(x=0) ^(x=+∞)  = −(1/(i−t)) =(1/(t−i)) =((t+i)/(t^2  +1)) ⇒  A_t = (1/(t^2  +1))  2)  we have ∫_0 ^∞  A_t dt =∫_0 ^∞   (dt/(t^2  +1)) =[arctant]_0 ^(+∞)  =(π/2)  and by fubini  ∫_0 ^∞  A_t dt =∫_0 ^∞ (∫_0 ^∞  e^(−xt)  sinxdx)dt =∫_0 ^∞  (∫_0 ^∞  e^(−xt) dt)sinxdx  =∫_0 ^∞  ([−(1/x) e^(−xt) ]_(t=0) ^(t=+∞) )sinx dx =∫_0 ^∞  ((sinx)/x) dx ⇒  ∫_0 ^∞   ((sinx)/x) dx =(π/2) .

1)wehaveAt=Im(0exteixdx)=Im(0e(it)xdx)0e(it)xdx=[1ixe(it)x]x=0x=+=1it=1ti=t+it2+1At=1t2+12)wehave0Atdt=0dtt2+1=[arctant]0+=π2andbyfubini0Atdt=0(0extsinxdx)dt=0(0extdt)sinxdx=0([1xext]t=0t=+)sinxdx=0sinxxdx0sinxxdx=π2.

Answered by tanmay.chaudhury50@gmail.com last updated on 28/Jan/19

B_t =∫_0 ^∞ e^(−xt) cosxdx  A_t =∫_0 ^∞ e^(−xt) sinxdx  B_t +iA_t =∫_0 ^∞ e^(−xt) (cosx+isinx)dx  B_t +iA_t =∫_0 ^∞ e^(−xt) .e^(ix) dx=∫_0 ^∞ e^(−xt+ix) dx  =∫_0 ^∞ e^(x(−t+i)) dx=∣(e^(x(−t+i)) /(−t+i))∣_0 ^∞   =∣(e^(−x(t−i)) /(−t+i))∣_0 ^∞ =((e^(−∞(t−i)) −e^0 )/(−t+i))=((−1)/(−t+i))=(1/(t−i))  =((t+i)/(t^2 +1))=(t/(t^2 +1))+i×(1/(t^2 +1))  so B_t =(t/(t^2 +1))   A_t =(1/(t^2 +1))

Bt=0extcosxdxAt=0extsinxdxBt+iAt=0ext(cosx+isinx)dxBt+iAt=0ext.eixdx=0ext+ixdx=0ex(t+i)dx=∣ex(t+i)t+i0=∣ex(ti)t+i0=e(ti)e0t+i=1t+i=1ti=t+it2+1=tt2+1+i×1t2+1soBt=tt2+1At=1t2+1

Answered by tanmay.chaudhury50@gmail.com last updated on 28/Jan/19

C_t =∫_0 ^∞ e^(−xt)  ((sinx)/x)dx  (dC_t /dt)=∫_0 ^∞ (∂/∂t)(((e^(−xt) sinx)/x))dx          =∫_0 ^∞ ((e^(−xt) ×−x×sinx)/x)dx            =−∫_0 ^∞ e^(−xt) sinxdx=−A_t   (dC_t /dt)=−(1/(t^2 +1))  −dC_t =(dt/(t^2 +1))  −C_t =tan^(−1) (t)+k  k=−C_t −tan^(−1) (t)  when t→∞  C_t →0  and tan^(−1) (t)→(π/2)  so k=−(π/2)  −C_t =tan^(−1) (t)−(π/2)  we have to find  ∫_0 ^∞ ((sinx)/x)dx  we know that  −∫_0 ^∞ e^(−xt) ((sinx)/x)dx=tan^(−1) (t)−(π/2)    now put t=0 botb side  −∫_0 ^∞ ((sinx)/x)=tan^(−1) (0)−(π/2)  so ∫_0 ^∞ ((sinx)/x)=(π/2)  proved

Ct=0extsinxxdxdCtdt=0t(extsinxx)dx=0ext×x×sinxxdx=0extsinxdx=AtdCtdt=1t2+1dCt=dtt2+1Ct=tan1(t)+kk=Cttan1(t)whentCt0andtan1(t)π2sok=π2Ct=tan1(t)π2wehavetofind0sinxxdxweknowthat0extsinxxdx=tan1(t)π2nowputt=0botbside0sinxx=tan1(0)π2so0sinxx=π2proved

Terms of Service

Privacy Policy

Contact: info@tinkutara.com