Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 65293 by mathmax by abdo last updated on 27/Jul/19

1) calculate ∫_(−∞) ^(+∞)   (dx/(x−a))  with a ∈C  2) find the values of  ∫_0 ^∞     (dx/(x^4  +1))  and  ∫_0 ^∞   (dx/(x^6  +1))  by using the decomposition inside C(x).

1)calculate+dxxawithaC2)findthevaluesof0dxx4+1and0dxx6+1byusingthedecompositioninsideC(x).

Commented by mathmax by abdo last updated on 01/Aug/19

1) let I(ξ) =∫_(−ξ) ^ξ   (dx/(x−a))  let a =α+iβ   we have ∫_(−∞) ^(+∞)  (dx/(x−a)) =lim_(ξ→+∞) I(ξ)  I(ξ) =∫_(−ξ) ^ξ   (dx/(x−α−iβ)) =∫_(−ξ) ^ξ  ((x−α+iβ)/((x−α)^2  +β^2 ))dx  =(1/2)[ln{(x−α)^2  +β^2 }]_(−ξ) ^ξ  +iβ ∫_(−ξ) ^ξ   (dx/((x−α)^2  +β^2 ))  =(1/2)ln((((ξ−α)^2  +β^2 )/((ξ+α)^2  )+β^2 ))) +iβ ∫_(−ξ) ^ξ  (dx/((x−α)^2  +β^2 ))  cha7gement x−α =∣β∣u give  ∫_(−ξ) ^ξ   (dx/((x−α)^2  +β^2 ))  = ∫_((−ξ−α)/(∣β∣)) ^((ξ−α)/(∣β∣))       ((∣β∣du)/(β^2 (1+u^2 ))) =(1/(∣β∣)){ arctan(((ξ−α)/(∣β∣)))+arctan(((ξ+α)/(∣β∣)))}  case 1  β>0 ⇒lim_(ξ→+∞)  I(ξ) =iβ(1/β)((π/2)+(π/2))=iπ  case 2  β<0  ⇒lim_(ξ→+∞)  I(ξ) =−iβ(1/β)((π/2)+(π/2))=−iπ .

1)letI(ξ)=ξξdxxaleta=α+iβwehave+dxxa=limξ+I(ξ)I(ξ)=ξξdxxαiβ=ξξxα+iβ(xα)2+β2dx=12[ln{(xα)2+β2}]ξξ+iβξξdx(xα)2+β2=12ln((ξα)2+β2(ξ+α)2)+β2)+iβξξdx(xα)2+β2cha7gementxα=∣βugiveξξdx(xα)2+β2=ξαβξαββduβ2(1+u2)=1β{arctan(ξαβ)+arctan(ξ+αβ)}case1β>0limξ+I(ξ)=iβ1β(π2+π2)=iπcase2β<0limξ+I(ξ)=iβ1β(π2+π2)=iπ.

Commented by mathmax by abdo last updated on 01/Aug/19

finally  ∫_(−∞) ^(+∞)  (dx/(x−a)) =iπ if im(a)>0  and −iπ if im(a)<0

finally+dxxa=iπifim(a)>0andiπifim(a)<0

Commented by mathmax by abdo last updated on 01/Aug/19

2) let decompose F(x)=(1/(x^4  +1))  x^4 +1 =0 ⇒x^4 =−1 ⇒(re^(iθ) )^4  =e^(i(2k+1)π)  ⇒r =1 and θ =(2k+1)(π/4)  so the roots are z_k =e^(i(2k+1)(π/4))    k∈[[0,3]]  z_0 =e^((iπ)/4)  , z_1 =e^(i((3π)/4))   ,z_2 =e^(i(((5π)/4)))   ,z_3 =e^(i(((7π)/4)))   F(x) =Σ_(i=0) ^3  (λ_i /(x−z_i ))     and  λ_i =(1/(4z_i ^3 )) =−(1/4)z_i  ⇒  ∫_0 ^(+∞)  (dx/(x^4  +1)) =(1/2)∫_(−∞) ^(+∞)  F(x)dx =(1/2)∫_(−∞) ^(+∞) Σ_(i=0) ^3   (−(1/4))(z_i /(x−z_i ))dx  =−(1/8) Σ_(i=0) ^3   ∫_(−∞) ^(+∞)   (z_i /(x−z_i ))dx  =−(1/8){  z_0  ∫_(−∞) ^(+∞)   (dx/(x−z_0 )) +z_1 ∫_(−∞) ^(+∞)  (dx/(x−z_1 )) +z_2  ∫_(−∞) ^(+∞)  (dx/(x−z_2 )) +z_3 ∫_(−∞) ^(+∞)  (dx/(x−z_3 ))}  =−(1/8){ iπ(z_0 )+iπ z_1 −iπz_2 −iπz_3 }  =−((iπ)/8){ z_0 +z_1 −(z_2 +z_3 )}  but  z_0  +z_1 =e^((iπ)/4)  +e^(i(π−(π/4)))   =e^((iπ)/4) −e^(−((iπ)/4))  =2i sin((π/4)) =2i((√2)/2) =i(√2)  z_2  +z_3 =e^(i((5π)/4))  +e^((i7π)/4)  =e^(i(π+(π/4)))  +e^(i(2π−(π/4))) =−e^((iπ)/4)   +e^(−((iπ)/4))   =−(e^((iπ)/4) −e^(−((iπ)/4)) ) =−2isin((π/4)) =−2i((√2)/2) =−i(√2) ⇒  ∫_0 ^∞    (dx/(1+x^4 )) =−((iπ)/8){i(√2)+i(√2)} =(π/8)(2(√2)) =((π(√2))/4)

2)letdecomposeF(x)=1x4+1x4+1=0x4=1(reiθ)4=ei(2k+1)πr=1andθ=(2k+1)π4sotherootsarezk=ei(2k+1)π4k[[0,3]]z0=eiπ4,z1=ei3π4,z2=ei(5π4),z3=ei(7π4)F(x)=i=03λixziandλi=14zi3=14zi0+dxx4+1=12+F(x)dx=12+i=03(14)zixzidx=18i=03+zixzidx=18{z0+dxxz0+z1+dxxz1+z2+dxxz2+z3+dxxz3}=18{iπ(z0)+iπz1iπz2iπz3}=iπ8{z0+z1(z2+z3)}butz0+z1=eiπ4+ei(ππ4)=eiπ4eiπ4=2isin(π4)=2i22=i2z2+z3=ei5π4+ei7π4=ei(π+π4)+ei(2ππ4)=eiπ4+eiπ4=(eiπ4eiπ4)=2isin(π4)=2i22=i20dx1+x4=iπ8{i2+i2}=π8(22)=π24

Terms of Service

Privacy Policy

Contact: info@tinkutara.com