Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 35226 by abdo mathsup 649 cc last updated on 16/May/18

1) calculate f(a) = ∫_0 ^π        (dx/(a sin^2 x  +cos^2 x))  with a>0  2) find the value of g(a) = ∫_0 ^π    ((sin^2 x)/((a sin^2 x +cos^2 x)^2 ))dx

1)calculatef(a)=0πdxasin2x+cos2xwitha>02)findthevalueofg(a)=0πsin2x(asin2x+cos2x)2dx

Commented by prof Abdo imad last updated on 19/May/18

1)we have f(a) = ∫_0 ^π      (dx/(a sin^2 x +cos^2 x))  = ∫_0 ^π      (dx/(a ((1−cos(2x))/2)+((1+cos(2x))/2)))  = 2 ∫_0 ^π       (dx/(a −a cos(2x) +1+cos(2x)))  =2 ∫_0 ^π         (dx/(a+1 +(1−a) cos(2x)))  =_(2x =t)   2 ∫_0 ^(2π)         (1/(1+a +(1−a)cost)) (dt/2)  = ∫_0 ^(2π)         (dt/(1+a +(1−a)cost))  changement  e^(it)  = z  give   I = ∫_(∣z∣=1)       (1/(1+a +(1−a) ((z+z^(−1) )/2))) (dz/(iz))  I = ∫_(∣z∣=1)    ((2dz)/(iz( 2+2a +(1−a)(z+z^(−1) )))  = ∫_(∣z∣=1)      ((−2idz)/(2(1+a)z  +(1−a)z^2   +1−a))  let consider ϕ(z) =  ((−2i)/((1−a)^ z^2   +2(1+a)z +1−a))  poles of ϕ ?

1)wehavef(a)=0πdxasin2x+cos2x=0πdxa1cos(2x)2+1+cos(2x)2=20πdxaacos(2x)+1+cos(2x)=20πdxa+1+(1a)cos(2x)=2x=t202π11+a+(1a)costdt2=02πdt1+a+(1a)costchangementeit=zgiveI=z∣=111+a+(1a)z+z12dzizI=z∣=12dziz(2+2a+(1a)(z+z1)=z∣=12idz2(1+a)z+(1a)z2+1aletconsiderφ(z)=2i(1a)z2+2(1+a)z+1apolesofφ?

Commented by prof Abdo imad last updated on 19/May/18

Δ^′    =(1+a)^2  −(1−a)^2 =1+2a +a^2  −1 +2a −a^2   =4a  ⇒z_1 =((−1−a +2(√a))/(1−a)) =((a−2(√a) +1)/(a−1))  = ((((√a) −1)^2 )/(((√a) −1)((√a) +1))) = (((√a) −1)/((√a)  +1))  z_2  = ((−1−a −2(√a))/(1−a)) = ((((√a) +1)^2 )/(a−1)) =((((√a) +1)^2 )/(((√a) −1)((√a) +1)))  = (((√a) +1)/((√a) −1))   ∣z_1 ∣ −1 = (((√a^ )−1)/((√a)+1))−1= (((√a) −1 −(√a) −1)/((√a) +1))  = ((−2)/((√a) +1)) <0⇒ ∣z_1 ∣<1  ∣z_2 ∣ −1 =  (1/(∣z_1 ∣)) −1 = ((1−∣z_1 ∣)/(∣z_1 ∣)) >0 ⇒ ∣z_2 ∣>1(to  elominate from rrsidus)  ∫_(∣z∣=1) ϕ(z)dz =2iπ Res(ϕ, z_1 )  Res(ϕ,z_1 ) =lim_(z→z_1 ) (z−z_1 )ϕ(z)  but ϕ(z) = ((−2i)/((1−a)(z−z_1 )(z−z_2 )))  Res(ϕ,z_1 )=  ((−2i)/((1−a)(z_1 −z_2 ))) = ((−2i)/((1−a)(z_1  −(1/z_1 ))))  =  ((−2i z_1 )/((1−a)(z_1 ^2  −1)))   ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ  ((−2iz_1 )/((1−a)(z_1 ^2  −1)))  = ((4πz_1 )/((1−a)(z_1 ^2  −1)))

Δ=(1+a)2(1a)2=1+2a+a21+2aa2=4az1=1a+2a1a=a2a+1a1=(a1)2(a1)(a+1)=a1a+1z2=1a2a1a=(a+1)2a1=(a+1)2(a1)(a+1)=a+1a1z11=a1a+11=a1a1a+1=2a+1<0z1∣<1z21=1z11=1z1z1>0z2∣>1(toelominatefromrrsidus)z∣=1φ(z)dz=2iπRes(φ,z1)Res(φ,z1)=limzz1(zz1)φ(z)butφ(z)=2i(1a)(zz1)(zz2)Res(φ,z1)=2i(1a)(z1z2)=2i(1a)(z11z1)=2iz1(1a)(z121)+φ(z)dz=2iπ2iz1(1a)(z121)=4πz1(1a)(z121)

Commented by abdo mathsup 649 cc last updated on 20/May/18

∫_(−∞) ^(+∞)   ϕ(z)dz = ((4π)/(1−a))  ((((√a) −1)/((√a) +1))/(((((√a)−1)^2 )/(((√a) +1)^2 )) −1))  = ((4π)/(1−a))  (((√a) −1)/((√a) +1)) ((((√a) +1)^2 )/(((√a)−1)^2  −((√a) +1)^2 ))  = ((4π(a−1))/((1−a)( a −2(√a) +1 −a−2(√a) −1)))  = ((4π)/(4(√a))) = (π/(√a))  so  f(a) = (π/(√a)) .

+φ(z)dz=4π1aa1a+1(a1)2(a+1)21=4π1aa1a+1(a+1)2(a1)2(a+1)2=4π(a1)(1a)(a2a+1a2a1)=4π4a=πasof(a)=πa.

Commented by abdo mathsup 649 cc last updated on 20/May/18

2) we have f^′ (a) = ∫_0 ^π    (∂/∂a){   (1/(asin^2 x +cos^2 x))}dx  = −∫_0 ^π     ((sin^2 x)/((a sin^2 x +cos^2 x)^2 ))dx =−g(a) ⇒  g(a) =−f^′ (a)  but   f(a)= (π/(√a)) ⇒ f^′ (a)= −π ((((√a))^′ )/a)  =−π  (1/(2a(√a))) ⇒  g(a) = ((−π)/(2a(√a)))  .

2)wehavef(a)=0πa{1asin2x+cos2x}dx=0πsin2x(asin2x+cos2x)2dx=g(a)g(a)=f(a)butf(a)=πaf(a)=π(a)a=π12aag(a)=π2aa.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com