Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 74637 by mathmax by abdo last updated on 28/Nov/19

1)calculate f(x)=∫_0 ^1 t^2 (√(x^2 +t^2 ))dt  with x>0  2) calculste g(x)=∫_0 ^1 (t^2 /(√(x^2 +t^2 )))dt

1)calculatef(x)=01t2x2+t2dtwithx>02)calculsteg(x)=01t2x2+t2dt

Commented by mathmax by abdo last updated on 28/Nov/19

1) we have f(x)=∫_0 ^1 t^2 (√(x^2 +t^2 ))dt  ⇒f(x)=_(t=x sh(u))  ∫_0 ^(argsh((1/x))) x^2 sh^2 u(xch(u))xch(u)du  = x^4 ∫_0 ^(ln((1/x)+(√(1+(1/x^2 )))))    sh^2 (u)ch^2 (u)du  =(x^4 /4) ∫_0 ^(ln(((1+(√(x^2 +1)))/x))) sh^2 (2u) du =(x^4 /8) ∫_0 ^(ln(((1+(√(x^2 +1)))/x))) (ch(4u)−1))du  =(x^4 /(32))[ sh(4u)]_0 ^(ln(((1+(√(x^2 +1)))/x))) −(x^4 /8)ln(((1+(√(x^2 +1)))/x))  =(x^4 /(64))[e^(4u) −e^(−4u) ]_0 ^(ln(((1+(√(x^2 +1)))/x))) −(x^4 /8)ln(((1+(√(x^2 +1)))/x))  =(x^4 /(64)){(((1+(√(x^2 +1)))/x))^4 −(((1+(√(x^2 +1)))/x))^(−4) }−(x^4 /8)ln(((1+(√(x^2 +1)))/x))

1)wehavef(x)=01t2x2+t2dtf(x)=t=xsh(u)0argsh(1x)x2sh2u(xch(u))xch(u)du=x40ln(1x+1+1x2)sh2(u)ch2(u)du=x440ln(1+x2+1x)sh2(2u)du=x480ln(1+x2+1x)(ch(4u)1))du=x432[sh(4u)]0ln(1+x2+1x)x48ln(1+x2+1x)=x464[e4ue4u]0ln(1+x2+1x)x48ln(1+x2+1x)=x464{(1+x2+1x)4(1+x2+1x)4}x48ln(1+x2+1x)

Answered by MJS last updated on 28/Nov/19

both with the same substitution  t=xsinh ln u =((x(u^2 −1))/(2u)) → dt=((x(u^2 +1))/(2u^2 ))du  ∫t^2 (√(x^2 +t^2 ))dt=(x^4 /(16))∫(((u^4 −1)^2 )/u^5 )du=  =x^4 (((u^8 −1)/(64u^4 ))−(1/8)ln u)=f(x)  ∫(t^2 /(√(x^2 +t^2 )))dt=(x^2 /4)∫(((u^2 −1)^2 )/u^3 )du=  =x^2 (((u^4 −1)/(8u^2 ))−(1/2)ln u)=g(x)  the borders: 0≤t≤1 ⇒ 1≤u≤((1+(√(x^2 +1)))/x)  f(1)=g(1)=0  f(x)=x^4 (((u^8 −1)/(64u^4 ))−(1/8)ln u) with u=((1+(√(x^2 +1)))/x)  g(x)=x^2 (((u^4 −1)/(8u^2 ))−(1/2)ln u) with u=((1+(√(x^2 +1)))/x)  sorry I′ve got no time to insert these and  transform

bothwiththesamesubstitutiont=xsinhlnu=x(u21)2udt=x(u2+1)2u2dut2x2+t2dt=x416(u41)2u5du==x4(u8164u418lnu)=f(x)t2x2+t2dt=x24(u21)2u3du==x2(u418u212lnu)=g(x)theborders:0t11u1+x2+1xf(1)=g(1)=0f(x)=x4(u8164u418lnu)withu=1+x2+1xg(x)=x2(u418u212lnu)withu=1+x2+1xsorryIvegotnotimetoinserttheseandtransform

Terms of Service

Privacy Policy

Contact: info@tinkutara.com