All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 74637 by mathmax by abdo last updated on 28/Nov/19
1)calculatef(x)=∫01t2x2+t2dtwithx>02)calculsteg(x)=∫01t2x2+t2dt
Commented by mathmax by abdo last updated on 28/Nov/19
1)wehavef(x)=∫01t2x2+t2dt⇒f(x)=t=xsh(u)∫0argsh(1x)x2sh2u(xch(u))xch(u)du=x4∫0ln(1x+1+1x2)sh2(u)ch2(u)du=x44∫0ln(1+x2+1x)sh2(2u)du=x48∫0ln(1+x2+1x)(ch(4u)−1))du=x432[sh(4u)]0ln(1+x2+1x)−x48ln(1+x2+1x)=x464[e4u−e−4u]0ln(1+x2+1x)−x48ln(1+x2+1x)=x464{(1+x2+1x)4−(1+x2+1x)−4}−x48ln(1+x2+1x)
Answered by MJS last updated on 28/Nov/19
bothwiththesamesubstitutiont=xsinhlnu=x(u2−1)2u→dt=x(u2+1)2u2du∫t2x2+t2dt=x416∫(u4−1)2u5du==x4(u8−164u4−18lnu)=f(x)∫t2x2+t2dt=x24∫(u2−1)2u3du==x2(u4−18u2−12lnu)=g(x)theborders:0⩽t⩽1⇒1⩽u⩽1+x2+1xf(1)=g(1)=0f(x)=x4(u8−164u4−18lnu)withu=1+x2+1xg(x)=x2(u4−18u2−12lnu)withu=1+x2+1xsorryI′vegotnotimetoinserttheseandtransform
Terms of Service
Privacy Policy
Contact: info@tinkutara.com