All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 77755 by abdomathmax last updated on 09/Jan/20
1)calculstef(a)=∫0∞dxx2−x+awitha>12)calculatef′(a)atformofintegralthenfinditsvalue.
Commented by mathmax by abdo last updated on 11/Jan/20
forgivef(a)=∫01dxx2−x+awitha>1
f(a)=∫01dxx2−x+awehavex2−x+a=x2−2x2+14+a−14=(x−12)2+4a−14and4a−14>0fhangementx−12=4a−12ugivef(a)=∫−14a−114a−114a−12(1+u2×4a−12du=∫−14a−114a−1du1+u2=2∫014a−1du1+u2=2[ln(u+=u2+1)]014a−1=2{ln(14a−1+14a−1+1)}=2ln(14a−1+2a4a−1)=2ln(2a+14a−1)=2ln(2a+1)−ln(4a−1)⇒f(a)=2ln(2a+1)−ln(4a−1)2)wehavef′(a)=∫01∂∂a(1x2−x+a)dx=∫01∂∂a{(x2−x+a)−12}dx=∫01−12(x2−x+a)−32dx=−12∫01dx(x2−x+a)x2−x+afromanothersidef′(a)=2×1a2a+1−44a−1=2×1a(2a+1)−44a−1=22a+a−44a−1⇒−12∫01dx(x2−x+a)x2−x+a=22a+a−44a−1alsoweget∫01dx(x2−x+a)x2−x+a=−42a+a+84a−1
Terms of Service
Privacy Policy
Contact: info@tinkutara.com