All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 102303 by bemath last updated on 08/Jul/20
∫1+csc2x1−sin2xdx?
Commented by bemath last updated on 08/Jul/20
thankyouboth
Answered by 1549442205 last updated on 08/Jul/20
F=∫11−sin2xdx+∫cos2x(cosx−sinx)2dx∫dx(cosx−sinx)2+∫cosx+sinxcosx−sinxdx=∫dx12cos2(x+π4)+∫22sin(x+π4)dx22cos(x+π4)=2tan(x+π4)+∫tan(x+π4)dx=2tan(x+π4)+ln∣cos(x+π4)∣+C
Answered by Dwaipayan Shikari last updated on 08/Jul/20
∫11−sin2x−12∫−2cos2x1−sin2xdx∫11−2tt2+1.1t2+1dt−12log(1−sin2x){puttanx=t∫1(t−1)2dt−12log(1−sin2x)=11−t−12log(1−sin2x)=cosxcosx−sinx−12log(1−sin2x)+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com