Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 28370 by abdo imad last updated on 24/Jan/18

1) factorizse p(x) =x^n  −1  inside C[x]  2) find the value of  Π_(k=1) ^(n−1)  sin(((kπ)/n))  3)find also the value of    Π_(k=0) ^(n−1)   sin(((kπ)/n) +θ).

1)factorizsep(x)=xn1insideC[x]2)findthevalueofk=1n1sin(kπn)3)findalsothevalueofk=0n1sin(kπn+θ).

Commented by abdo imad last updated on 26/Jan/18

1)the roots of p(x) are the complex z_k = e^(i((2kπ)/n))   and k ∈[[0,n−1]]  and p(x)=λ Π_(k=1) ^(n−1)  (x−z_k ) .it s clear that λ=1   2)p(x)= (x−1) Π_(k=1) ^(n−1) ( x− e^(i((2kπ)/n))  )   for x≠1  ((p(x))/(x−1)) = Π_(k=1) ^(n−1)  (x− e^(i ((2kπ)/n)) )   ⇒  lim_(x→1)   ((x^n −1)/(x−1)) = Π_(k=1) ^(n−1)  (1−cos(((2kπ)/n)) −isin(((2kπ)/n)))  ⇒ n= Π_(k=1) ^(n−1) (2 sin^ (((kπ)/n)) −2isin(((kπ)/n))cos(((kπ)/n)))  ⇒n= (−2i)^(n−1)  Π_(k=1) ^(n−1) (sin(((kπ)/n))(e^(i((kπ)/n)) ))  ⇒ n= (−2i)^(n−1) ( Π_(k=1) ^(n−1)  sin(((kπ)/n))) e^(i(π/n)Σ_(k=1) ^(n−1) k)   ⇒n= (−2i)^(n−1)  e^(i(π/n)((n(n−1))/2)) Π_(k=1) ^(n−1)  sin(((kπ)/n))  =(−i)^(n−1)  i^(n−1)   2^(n−1) Π_(k=1) ^(n−1)  sin(((kπ)/n))= 2^(n−1)   Π_(k=1) ^(n−1)  sin(((kπ)/n))  ⇒ Π_(k=1) ^(n−1)  sin(((kπ)/n))= (n/2^(n−1) )  .    (n≥2)   ....be continued.....

1)therootsofp(x)arethecomplexzk=ei2kπnandk[[0,n1]]andp(x)=λk=1n1(xzk).itsclearthatλ=12)p(x)=(x1)k=1n1(xei2kπn)forx1p(x)x1=k=1n1(xei2kπn)limx1xn1x1=k=1n1(1cos(2kπn)isin(2kπn))n=k=1n1(2sin(kπn)2isin(kπn)cos(kπn))n=(2i)n1k=1n1(sin(kπn)(eikπn))n=(2i)n1(k=1n1sin(kπn))eiπnk=1n1kn=(2i)n1eiπnn(n1)2k=1n1sin(kπn)=(i)n1in12n1k=1n1sin(kπn)=2n1k=1n1sin(kπn)k=1n1sin(kπn)=n2n1.(n2)....becontinued.....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com