Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 82971 by mathmax by abdo last updated on 26/Feb/20

1)find ∫   (dx/((x^2 +x+1)^6 ))  2)calculate ∫_(−∞) ^(+∞)  (dx/((x^2 +x+1)^6 ))

1)finddx(x2+x+1)62)calculate+dx(x2+x+1)6

Commented by mathmax by abdo last updated on 26/Feb/20

2) let A =∫_(−∞) ^(+∞)  (dx/((x^2  +x+1)^6 )) ⇒ A =∫_(−∞) ^(+∞)  (dx/(((x+(1/2))^2  +(3/4))^6 ))  =_(x+(1/2)=((√3)/2)t) ((4/3))^6   ∫_(−∞) ^(+∞)  (dt/((t^2  +1)^6 ))  let  also changement  t=tanθ give ∫_(−∞) ^(+∞)  (dt/((t^2  +1)^6 )) =∫_(−(π/2)) ^(π/2)  (((1+tan^2 θ)dθ)/((1+tan^2 θ)^6 ))  =∫_(−(π/2)) ^(π/2)  (dθ/((1+tan^2 θ)^4 )) =∫_(−(π/2)) ^(π/2) cos^8 t dt =2 ∫_0 ^(π/2) (((1+cos(2t))/2))^4  dt  =(1/8)∫_0 ^(π/2) (1+2cos(2t) +cos^2 (2t))^2  dt  =(1/8)∫_0 ^(π/2) {  (1+2cos(2t))^2  +2(1+2cos(2t)cos^2 (2t) +cos^4 (2t))dt  =(1/8)∫_0 ^(π/2) {1+4cos(2t) +4cos^2 (2t) +2cos^2 (2t)+4cos^3 (2t)+cos^4 (2t)}dt  =(π/(16)) +(1/2)∫_0 ^(π/2)  cos(2t)+(3/4)∫_0 ^(π/2)  cos^2 (2t)dt+(1/2)∫_0 ^(π/2)  cos^3 (2t)dt+(1/8)∫_0 ^(π/2)  cos^4 (2t)dt  ∫_0 ^(π/2)  cos(2t)dt =(1/2)sin(2t)]_0 ^(π/2) =0  ∫_0 ^(π/2)  cos^2 (2t)dt =(1/2)∫_0 ^(π/2) (1+cos(4t))dt  =(π/4) +(1/8)[sin(4t)]_0 ^(π/2)  =(π/4)  ∫_0 ^(π/2)  cos^3 (2t)dt =∫_0 ^(π/2) (((1+cos(4t))/2))cos(2t)dt  =(1/2)∫_0 ^(π/2) {cos(2t)+cos(2t)cos(4t)}dt  =(1/2)∫_0 ^(π/2) cos(2t)dt  +(1/4)∫_0 ^(π/2) (cos(2t)+cos(6t))dt=0  ∫_0 ^(π/2)  cos^4 t dt =∫_0 ^(π/2) (((1+cos(2t))/2))^2  dt  =(1/4)∫_0 ^(π/2) (1+2cos(2t) +cos^2 (2t))dt  =(π/8) +(1/2)∫_0 ^(π/2)  cos(2t)dt +(1/8)∫_0 ^(π/2) (1+cos(4t))dt  =(π/8) +0+(π/(16)) =((3π)/(16))  the value of  I is known

2)letA=+dx(x2+x+1)6A=+dx((x+12)2+34)6=x+12=32t(43)6+dt(t2+1)6letalsochangementt=tanθgive+dt(t2+1)6=π2π2(1+tan2θ)dθ(1+tan2θ)6=π2π2dθ(1+tan2θ)4=π2π2cos8tdt=20π2(1+cos(2t)2)4dt=180π2(1+2cos(2t)+cos2(2t))2dt=180π2{(1+2cos(2t))2+2(1+2cos(2t)cos2(2t)+cos4(2t))dt=180π2{1+4cos(2t)+4cos2(2t)+2cos2(2t)+4cos3(2t)+cos4(2t)}dt=π16+120π2cos(2t)+340π2cos2(2t)dt+120π2cos3(2t)dt+180π2cos4(2t)dt0π2cos(2t)dt=12sin(2t)]0π2=00π2cos2(2t)dt=120π2(1+cos(4t))dt=π4+18[sin(4t)]0π2=π40π2cos3(2t)dt=0π2(1+cos(4t)2)cos(2t)dt=120π2{cos(2t)+cos(2t)cos(4t)}dt=120π2cos(2t)dt+140π2(cos(2t)+cos(6t))dt=00π2cos4tdt=0π2(1+cos(2t)2)2dt=140π2(1+2cos(2t)+cos2(2t))dt=π8+120π2cos(2t)dt+180π2(1+cos(4t))dt=π8+0+π16=3π16thevalueofIisknown

Commented by abdomathmax last updated on 26/Feb/20

1) complex method  let A =∫  (dx/((x^2  +x+1)^6 ))  x^2  +x+1 =0→Δ=1−4=−3 ⇒  z_1 =((−1+i(√3))/2) =e^((i2π)/(3 ))    and z_2   =((−1−i(√3))/2)=e^(−((i2π)/3))   A =∫    (dx/((x−z_1 )^6 (x−z_2 )^6 )) =∫    (dx/((((x−z_1 )/(x−z_2 )))^6 (x−z_2 )^(12) ))  changement ((x−z_1 )/(x−z_2 )) =t give x−z_1 =tx−tz_2  ⇒  (1−t)x =z_1 −tz_2  ⇒x =((tz_2 −z_1 )/(t−1)) ⇒  dx =((z_2 (t−1)−(z_2 t−z_1 ))/((t−1)^2 ))dt =((z_1 −z_2 )/((t−1)^2 )) dt and  x−z_2 =((z_2 t−z_1 )/(t−1))−z_2 =((z_2 t−z_1 −z_2 t+z_2 )/(t−1))  =((z_2 −z_1 )/((t−1))) ⇒A =∫  ((z_1 −z_2 )/((t−1)^2  t^6 (((z_2 −z_1 )/(t−1)))^(12) ))dt  =−(1/((z_2 −z_1 )^(11) )) ∫   (((t−1)^(12) )/((t−1)^2 t^6 ))dt  =((−1)/((z_2 −z_1 )^(11) ))∫  (((t−1)^(10) )/t^6 )dt  (z_1 −z_2 )^(11) ×A =∫  ((Σ_(k=0) ^(10)  C_(10) ^k (−1)^k  t^k )/t^6 )dt  =∫  Σ_(k=0) ^(10) (−1)^k  C_(10) ^k  t^(k−6)  dt  =Σ_(k=0 and k≠5) ^(10)  (((−1)^k )/(k−5))C_(10) ^k  t^(k−5)  −C_(10) ^5  lnt +C  =Σ_(k=0 and k≠5) ^(10)    (((−1)^k )/(k−5))C_(10) ^k (((x−z_1 )/(x−z_2 )))^(k−5)  −C_(10) ^5 ln(((x−z_1 )/(x−z_2 ))) +C  A =(1/((z_1 −z_2 )^(11) ))Σ_(k=0 and k≠5) ^(10)    (((−1)^k )/(k−5))C_(10) ^k (((x−z_1 )/(x−z_2 )))^(k−5)   −(C_(10) ^5 /((z_1 −z_2 )^(11) ))ln(((x−z_1 )/(x−z_2 ))) +C

1)complexmethodletA=dx(x2+x+1)6x2+x+1=0Δ=14=3z1=1+i32=ei2π3andz2=1i32=ei2π3A=dx(xz1)6(xz2)6=dx(xz1xz2)6(xz2)12changementxz1xz2=tgivexz1=txtz2(1t)x=z1tz2x=tz2z1t1dx=z2(t1)(z2tz1)(t1)2dt=z1z2(t1)2dtandxz2=z2tz1t1z2=z2tz1z2t+z2t1=z2z1(t1)A=z1z2(t1)2t6(z2z1t1)12dt=1(z2z1)11(t1)12(t1)2t6dt=1(z2z1)11(t1)10t6dt(z1z2)11×A=k=010C10k(1)ktkt6dt=k=010(1)kC10ktk6dt=k=0andk510(1)kk5C10ktk5C105lnt+C=k=0andk510(1)kk5C10k(xz1xz2)k5C105ln(xz1xz2)+CA=1(z1z2)11k=0andk510(1)kk5C10k(xz1xz2)k5C105(z1z2)11ln(xz1xz2)+C

Answered by MJS last updated on 26/Feb/20

Ostrogradski  Q_1 (x)=(x^2 +x+1)^5   Q_2 (x)=x^2 +x+1  P_1 (x)=((28)/(27))(x+(1/2))(x^8 +4x^7 +((21)/6)x^6 +((35)/2)x^5 +((223)/(10))x^4 +((201)/(10))x^3 +((1973)/(140))x^2 +((881)/(140))x+((297)/(140)))  P_2 (x)=((28)/(27))  ∫(dx/((x^2 +x+1)^6 ))=((P_1 (x))/(Q_1 (x)))+((28)/(27))∫(dx/(x^2 +x+1))  now it′s simplier than simple

OstrogradskiQ1(x)=(x2+x+1)5Q2(x)=x2+x+1P1(x)=2827(x+12)(x8+4x7+216x6+352x5+22310x4+20110x3+1973140x2+881140x+297140)P2(x)=2827dx(x2+x+1)6=P1(x)Q1(x)+2827dxx2+x+1nowitssimplierthansimple

Terms of Service

Privacy Policy

Contact: info@tinkutara.com