All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 82971 by mathmax by abdo last updated on 26/Feb/20
1)find∫dx(x2+x+1)62)calculate∫−∞+∞dx(x2+x+1)6
Commented by mathmax by abdo last updated on 26/Feb/20
2)letA=∫−∞+∞dx(x2+x+1)6⇒A=∫−∞+∞dx((x+12)2+34)6=x+12=32t(43)6∫−∞+∞dt(t2+1)6letalsochangementt=tanθgive∫−∞+∞dt(t2+1)6=∫−π2π2(1+tan2θ)dθ(1+tan2θ)6=∫−π2π2dθ(1+tan2θ)4=∫−π2π2cos8tdt=2∫0π2(1+cos(2t)2)4dt=18∫0π2(1+2cos(2t)+cos2(2t))2dt=18∫0π2{(1+2cos(2t))2+2(1+2cos(2t)cos2(2t)+cos4(2t))dt=18∫0π2{1+4cos(2t)+4cos2(2t)+2cos2(2t)+4cos3(2t)+cos4(2t)}dt=π16+12∫0π2cos(2t)+34∫0π2cos2(2t)dt+12∫0π2cos3(2t)dt+18∫0π2cos4(2t)dt∫0π2cos(2t)dt=12sin(2t)]0π2=0∫0π2cos2(2t)dt=12∫0π2(1+cos(4t))dt=π4+18[sin(4t)]0π2=π4∫0π2cos3(2t)dt=∫0π2(1+cos(4t)2)cos(2t)dt=12∫0π2{cos(2t)+cos(2t)cos(4t)}dt=12∫0π2cos(2t)dt+14∫0π2(cos(2t)+cos(6t))dt=0∫0π2cos4tdt=∫0π2(1+cos(2t)2)2dt=14∫0π2(1+2cos(2t)+cos2(2t))dt=π8+12∫0π2cos(2t)dt+18∫0π2(1+cos(4t))dt=π8+0+π16=3π16thevalueofIisknown
Commented by abdomathmax last updated on 26/Feb/20
1)complexmethodletA=∫dx(x2+x+1)6x2+x+1=0→Δ=1−4=−3⇒z1=−1+i32=ei2π3andz2=−1−i32=e−i2π3A=∫dx(x−z1)6(x−z2)6=∫dx(x−z1x−z2)6(x−z2)12changementx−z1x−z2=tgivex−z1=tx−tz2⇒(1−t)x=z1−tz2⇒x=tz2−z1t−1⇒dx=z2(t−1)−(z2t−z1)(t−1)2dt=z1−z2(t−1)2dtandx−z2=z2t−z1t−1−z2=z2t−z1−z2t+z2t−1=z2−z1(t−1)⇒A=∫z1−z2(t−1)2t6(z2−z1t−1)12dt=−1(z2−z1)11∫(t−1)12(t−1)2t6dt=−1(z2−z1)11∫(t−1)10t6dt(z1−z2)11×A=∫∑k=010C10k(−1)ktkt6dt=∫∑k=010(−1)kC10ktk−6dt=∑k=0andk≠510(−1)kk−5C10ktk−5−C105lnt+C=∑k=0andk≠510(−1)kk−5C10k(x−z1x−z2)k−5−C105ln(x−z1x−z2)+CA=1(z1−z2)11∑k=0andk≠510(−1)kk−5C10k(x−z1x−z2)k−5−C105(z1−z2)11ln(x−z1x−z2)+C
Answered by MJS last updated on 26/Feb/20
OstrogradskiQ1(x)=(x2+x+1)5Q2(x)=x2+x+1P1(x)=2827(x+12)(x8+4x7+216x6+352x5+22310x4+20110x3+1973140x2+881140x+297140)P2(x)=2827∫dx(x2+x+1)6=P1(x)Q1(x)+2827∫dxx2+x+1nowit′ssimplierthansimple
Terms of Service
Privacy Policy
Contact: info@tinkutara.com