Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 53228 by maxmathsup by imad last updated on 19/Jan/19

1) find f(a) =∫_0 ^1    (dx/((ax+1)(√(x^2 −x+1))))   with  a>0  2) calculate f^′ (a)  3)find the value of  ∫_0 ^1   ((xdx)/((ax+1)^2 (√(x^2 −x+1))))  4) calculate ∫_0 ^1    (dx/((2x+1)(√(x^2 −x+1)))) and ∫_0 ^1    ((xdx)/((2x+1)^2 (√(x^2 −x+1))))

1)findf(a)=01dx(ax+1)x2x+1witha>02)calculatef(a)3)findthevalueof01xdx(ax+1)2x2x+14)calculate01dx(2x+1)x2x+1and01xdx(2x+1)2x2x+1

Commented by Abdo msup. last updated on 20/Jan/19

1)we have x^2 −x +1 =(x−(1/2))^2 +(3/4) changement  x−(1/2) =((√3)/2)sh(t) give   f(a) = ∫_(argsh(−(1/(√3)))) ^(argsh((1/(√3))))     (1/((a((1/2)+((√3)/2)sh(t))+1)((√3)/2)ch(t)))((√3)/2)ch(t)dt  =∫_(ln(−(1/(√3)) +(2/(√3)))) ^(ln((1/(√3)) +(2/(√3))))    ((2dt)/(a +a(√3)sh(t)+2))  =∫_(ln((1/(√3)))) ^(ln((√3)))    ((2dt)/(a+a(√3)((e^t −e^(−t) )/2)+2))  = 4 ∫_(ln((1/(√3)))) ^(ln((√3)))     (dt/(2a +a(√3)(e^t −e^(−t) )+4))  =_(e^t =u)     4 ∫_(1/(√3)) ^(√3)         (1/(2a+a(√3)(u−u^(−1) )+4)) (du/u)  =4 ∫_(1/(√3)) ^(√3)        (du/(2au +a(√3)u^2  −a(√3) +4u))  =4 ∫_(1/(√3)) ^(√3)    (du/(a(√3)u^2  +(2a+4)u−a(√3)))  roots of p(u)=a(√3)u^2 +(2a+4)u−a(√3)  Δ^′ =(a+2)^2 +3a^2  =a^2 +4a +4 +3a^2 =4a^2 +4a +  u_1 =((−a−2+2(√(1+a+a^2 )))/(a(√3)))  u_2 =((−a−2−2(√(1+a+a^2 )))/(a(√3))) ⇒  F(u) =(1/(a(√3)(u−u_1 )(u−u_2 )))  =(1/(a(√3)))(1/(u_1 −u_2 )){ (1/(u−u_1 )) −(1/(u−u_2 ))}  =(1/(a(√3))) (1/((4(√(1+a+a^2 )))/(a(√3)))) {(1/(u−u_1 )) −(1/(u−u_2 ))}  =(1/(4(√(1+a+a^2 )))){(1/(u−u_1 )) −(1/(u−u_2 ))}? ⇒  f(a) =(1/(√(1+a+a^2 ))) [ln∣((u−u_1 )/(u−u_2 ))∣]_(1/(√3)) ^(√3)   =(1/(√(1+a+a^2 ))){ln∣(((√3)−u_1 )/((√3)−u_2 ))∣−ln∣(((1/(√3))−u_1 )/((1/(√3))−u_2 ))∣}  =(1/(√(1+a+a^2 ))){ln∣(((√3)−((−a−2+2(√(1+a+a^2 )))/(a(√3))))/((√3)−((−a−2+2(√(1+a+a^2 )))/(a(√3)))))∣  −ln∣((1−(√3)((−a−2+2(√(1+a+a^2 )))/(a(√3))))/(1−(√3)((−a−2 −2(√(1+a+a^2 )))/(a(√3)))))∣  =(1/(√(1+a+a^2 ))){ ln∣((4a+2+2(√(1+a+a^2 )))/(4a+2−2(√(1+a+a^2 ))))∣  −ln∣ ((2a(√3)+2−2(√(1+a+a^2 )))/(2a(√3)+2 +2(√(1+a+a^2 ))))∣}  ⇒f(a) =(1/(√(1+a+a^2 ))){ ln∣((2a+1+(√(1+a+a^2 )))/(2a+1−(√(1+a+a^2 ))))∣  −ln∣((a(√3)+1−(√(1+a+a^2 )))/(a(√3)+1 +(√(1+a+a^2 ))))∣} .

1)wehavex2x+1=(x12)2+34changementx12=32sh(t)givef(a)=argsh(13)argsh(13)1(a(12+32sh(t))+1)32ch(t)32ch(t)dt=ln(13+23)ln(13+23)2dta+a3sh(t)+2=ln(13)ln(3)2dta+a3etet2+2=4ln(13)ln(3)dt2a+a3(etet)+4=et=u413312a+a3(uu1)+4duu=4133du2au+a3u2a3+4u=4133dua3u2+(2a+4)ua3rootsofp(u)=a3u2+(2a+4)ua3Δ=(a+2)2+3a2=a2+4a+4+3a2=4a2+4a+u1=a2+21+a+a2a3u2=a221+a+a2a3F(u)=1a3(uu1)(uu2)=1a31u1u2{1uu11uu2}=1a3141+a+a2a3{1uu11uu2}=141+a+a2{1uu11uu2}?f(a)=11+a+a2[lnuu1uu2]133=11+a+a2{ln3u13u2ln13u113u2}=11+a+a2{ln3a2+21+a+a2a33a2+21+a+a2a3ln13a2+21+a+a2a313a221+a+a2a3=11+a+a2{ln4a+2+21+a+a24a+221+a+a2ln2a3+221+a+a22a3+2+21+a+a2}f(a)=11+a+a2{ln2a+1+1+a+a22a+11+a+a2lna3+11+a+a2a3+1+1+a+a2}.

Commented by Abdo msup. last updated on 20/Jan/19

we have f^′ (a) =∫_0 ^1 ((−xdx)/((ax+1)^2 (√(x^2 −x+1)))) ⇒  ∫_0 ^1   ((xdx)/((ax+1)^2 (√(x^2 −x +1)))) =−f^′ (a) rest calculus of  f^′ (a)..be continued...

wehavef(a)=01xdx(ax+1)2x2x+101xdx(ax+1)2x2x+1=f(a)restcalculusoff(a)..becontinued...

Commented by Abdo msup. last updated on 20/Jan/19

4) ∫_0 ^1      (dx/((2x+1)(√(x^2 −x +1)))) =f(2)  =(1/(√(1+2 +2^2 ))){ln∣((5+(√(1+2+2^2 )))/(5−(√(1+2+2^2 ))))∣−ln∣((2(√3)+1−(√(1+2+2^2 )))/(2(√3)+1+(√(1+2+2^2 ))))∣}  =(1/(√7)){ln∣((5+(√7))/(5−(√7)))∣−ln∣((2(√3)+1−(√7))/(2(√3)+1+(√7)))∣} .

4)01dx(2x+1)x2x+1=f(2)=11+2+22{ln5+1+2+2251+2+22ln23+11+2+2223+1+1+2+22}=17{ln5+757ln23+1723+1+7}.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com