Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 35225 by abdo mathsup 649 cc last updated on 16/May/18

1) find f(a) = ∫_0 ^(2π)      (dt/(a cos^2 t + sin^2 t)) with a≠0  2) find g(a) = ∫_0 ^(2π)    ((cos^2 t)/((a cos^2 t +sin^2 t)^2 ))dt

1)findf(a)=02πdtacos2t+sin2twitha02)findg(a)=02πcos2t(acos2t+sin2t)2dt

Commented by abdo mathsup 649 cc last updated on 16/May/18

a>0

a>0

Commented by prof Abdo imad last updated on 20/May/18

we have f(a) = ∫_0 ^(2π)      (dt/(a((1+cos(2t))/2) +((1−cos(t))/2)))  = 2 ∫_0 ^(2π)          (dt/(a +a cos(2t) +1 −cos(2t)))  =2 ∫_0 ^(2π)     (dt/(a+1 +(a−1)cos(2t)))  =_(2t=x)   2 ∫_0 ^(4π)         (1/(a+1 +(a−1)cosx)) (dx/2)  = ∫_0 ^(2π)       (dx/(a+1 +(a−1)cosx))  +∫_(2π) ^(4π)       (dx/(a+1 +(a−1)cosx))  ∫_(2π) ^(4π)      (dx/(a+1 +(a−1)cosx)) =_(x=t+2π)  ∫_0 ^(2π)      (dt/(a+1 +(a−1)cost))  ⇒ f(a) = 2 ∫_0 ^(2π)       (dx/(a+1 +(a−1)cosx))  changement  e^(ix)  =z  give  f(a) = 2∫_(∣z∣=1)        (1/(a+1 +(a−1)((z+z^(−1) )/2))) (dz/(iz))  f(a) =4  ∫_(∣z∣=1)        (dz/(iz(2+2a +(a−1)(z+z^(−1) ))))  =∫_(∣z∣=1)        ((−4i dz)/(2(1+a)z +(a−1)z^2  +a−1))  let inyroduce tbe complex function  ϕ(z) =   ((−4i)/((a−1)z^2   +2(a+1)z +a−1)) .poles of ϕ?

wehavef(a)=02πdta1+cos(2t)2+1cos(t)2=202πdta+acos(2t)+1cos(2t)=202πdta+1+(a1)cos(2t)=2t=x204π1a+1+(a1)cosxdx2=02πdxa+1+(a1)cosx+2π4πdxa+1+(a1)cosx2π4πdxa+1+(a1)cosx=x=t+2π02πdta+1+(a1)costf(a)=202πdxa+1+(a1)cosxchangementeix=zgivef(a)=2z∣=11a+1+(a1)z+z12dzizf(a)=4z∣=1dziz(2+2a+(a1)(z+z1))=z∣=14idz2(1+a)z+(a1)z2+a1letinyroducetbecomplexfunctionφ(z)=4i(a1)z2+2(a+1)z+a1.polesofφ?

Commented by abdo mathsup 649 cc last updated on 20/May/18

Δ^′  = (a+1)^2 −(a−1)^2 = a^2  +2a+1−a^2  +2a−1=4a  z_1 = ((−a−1 +2(√a))/(a−1)) =  ((a −2(√a) +1)/(1−a)) = (((1−(√a))^2 )/((1−(√a))(1+(√a))))  = ((1−(√a))/(1+(√a)))   and z_2 = ((−a−1−2(√a))/(a−1)) = ((a +2(√a) +1)/(1−a))  = (((1+(√a))^2 )/((1−(√a))(1+(√a)))) = ((1+(√a))/(1−(√a)))  case1  a>1  ∣z_1 ∣ −1 = (((√a) −1)/((√a)+1)) −1=(((√a) −1−(√a) −1)/((√a) +1))  = ((−2)/((√a) +1))<0 ⇒ ∣z_1 ∣<1  ∣z_2 ∣−1 = (1/(∣z_1 ∣)) −1 = ((1−∣z_1 ∣)/(∣z_1 ∣)) >0 ⇒ ∣z_2 ∣>1 (to  eliminate from residus)  ∫_(∣z∣=1) ϕ(2)dz =2iπ Res(ϕ,z_1 )  we have  ϕ(z) =  ((−4i)/((a−1)(z −z_1 )(z−z_2 ))) ⇒  Res(ϕ, z_1 ) =   ((−4i)/((a−1)(z_1  −z_2 )))  = ((−4i)/((a−1)(z_1  −(1/z_1 ))))  = ((−4i z_1 )/((a−1)(z_1 ^2  −1)))  =((−4i ((1−(√a))/(1+(√a))))/((a−1)( (((1−(√a))^2 )/((1+(√a))^2 )) −1)))  = ((−4i(1−(√a)))/((a−1)(1+(√a)){ (1−(√a))^2  −(1+(√a))^2 })) (1+(√a))^2   = ((4i)/(a−2(√a) +1 −a −2(√a) −1)) =  ((4i)/(−4(√a))) =((−i)/(√a))  ∫_(∣z∣=1) ϕ(z)dz =2iπ {((−i)/(√a))} = ((2π)/(√a)) ⇒   f(a) =  ((2π)/(√a))  with  a>1  case 2     0<a<1   ∣z_1 ∣ −1 =((1−(√a))/(1+(√a))) −1  = ((1−(√a)−1−(√a))/(1+(√a))) = ((−2(√a))/(1+a)) <0 ⇒ ∣z_1 ∣<1  and  ∣z_2 ∣>1   so the value of f(a) dont change and  f(a) = ((2π)/(√a)) .

Δ=(a+1)2(a1)2=a2+2a+1a2+2a1=4az1=a1+2aa1=a2a+11a=(1a)2(1a)(1+a)=1a1+aandz2=a12aa1=a+2a+11a=(1+a)2(1a)(1+a)=1+a1acase1a>1z11=a1a+11=a1a1a+1=2a+1<0z1∣<1z21=1z11=1z1z1>0z2∣>1(toeliminatefromresidus)z∣=1φ(2)dz=2iπRes(φ,z1)wehaveφ(z)=4i(a1)(zz1)(zz2)Res(φ,z1)=4i(a1)(z1z2)=4i(a1)(z11z1)=4iz1(a1)(z121)=4i1a1+a(a1)((1a)2(1+a)21)=4i(1a)(a1)(1+a){(1a)2(1+a)2}(1+a)2=4ia2a+1a2a1=4i4a=iaz∣=1φ(z)dz=2iπ{ia}=2πaf(a)=2πawitha>1case20<a<1z11=1a1+a1=1a1a1+a=2a1+a<0z1∣<1andz2∣>1sothevalueoff(a)dontchangeandf(a)=2πa.

Commented by abdo mathsup 649 cc last updated on 20/May/18

we have f^′ (a) = ∫_0 ^(2π)    (∂/∂a){      (1/(a cos^2 t +sin^2 t))}dt  = − ∫_0 ^(2π)     ((cos^2 t)/((acos^2 t +sin^2 t)^2 ))dt =−g(a) ⇒  g(a) =−f^′ (a)  or  f(a)= ((2π)/(√a)) ⇒f^′ (a) =2π{ −((((√a))^′ )/a)}  =−2π  (1/(2a(√a))) = ((−π)/(a(√a))) ⇒  g(a) = −(π/(a(√a))) .

wehavef(a)=02πa{1acos2t+sin2t}dt=02πcos2t(acos2t+sin2t)2dt=g(a)g(a)=f(a)orf(a)=2πaf(a)=2π{(a)a}=2π12aa=πaag(a)=πaa.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com