Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 85160 by mathmax by abdo last updated on 19/Mar/20

1) find f(a) =∫_0 ^∞   (dx/(x^4  +a)) with a>0  2) find g(a)=∫_0 ^∞   (dx/((x^4  +a)^2 ))  3) find value of integrals   ∫_0 ^∞   (dx/(x^4  +1)) ,∫_0 ^∞  (dx/(2x^4  +8))  ∫_0 ^∞  (dx/((x^4  +1)^2 )) and ∫_0 ^∞   (dx/((2x^4 +8)^2 ))

1)findf(a)=0dxx4+awitha>02)findg(a)=0dx(x4+a)23)findvalueofintegrals0dxx4+1,0dx2x4+80dx(x4+1)2and0dx(2x4+8)2

Commented by mathmax by abdo last updated on 19/Mar/20

1) f(a)=∫_0 ^∞  (dx/(x^4  +a))  =_(x=^4 (√a)t)    ∫_0 ^∞   (((^4 (√a))dt)/(a(1+t^4 ))) =(1/a^(1−(1/4)) )∫_0 ^∞   (dt/(t^4  +1))  =(1/a^(3/4) ) ∫_0 ^∞   (dt/(t^4  +1))  changement  t=u^(1/4)  give  ∫_0 ^∞   (dt/(t^4  +1)) =(1/4)∫_0 ^∞  (u^((1/4)−1) /(1+u))du =(1/4)×(π/(sin((π/4)))) =(π/(4×((√2)/2))) =(π/(2(√2))) ⇒  f(a)=(π/(2(√2)))a^(−(3/4))   2)we have f^′ (a)=−∫_0 ^∞   (dx/((x^4  +a)^2 )) =−g(a) ⇒g(a)=−f^′ (a)  g(a)=−(π/(2(√2)))×(((−3)/4))a^(((−3)/(4 ))−1)  =((3π)/(8(√2))) a^(−(7/4))

1)f(a)=0dxx4+a=x=4at0(4a)dta(1+t4)=1a1140dtt4+1=1a340dtt4+1changementt=u14give0dtt4+1=140u1411+udu=14×πsin(π4)=π4×22=π22f(a)=π22a342)wehavef(a)=0dx(x4+a)2=g(a)g(a)=f(a)g(a)=π22×(34)a341=3π82a74

Commented by mathmax by abdo last updated on 19/Mar/20

3) ∫_0 ^∞   (dx/(x^4  +1)) =f(1) =(π/(2(√2)))  ∫_0 ^∞   (dx/(2x^4  +8)) =(1/2)∫_0 ^∞   (dx/(x^4  +4)) =(1/2)f(4) =(π/(4(√2)))(4)^(−(3/4))   =(π/(4(√2)4^(3/4) )) =(π/(4^(7/4) (√2))) =(π/(2^(7/2) (√2))) =(π/(8×2)) =(π/(16))  ∫_0 ^∞   (dx/((x^4  +1)^2 )) =g(1)=((3π(√2))/(16))

3)0dxx4+1=f(1)=π220dx2x4+8=120dxx4+4=12f(4)=π42(4)34=π42434=π4742=π2722=π8×2=π160dx(x4+1)2=g(1)=3π216

Answered by mind is power last updated on 19/Mar/20

x=(√((√a)tg(t)))⇒  f(a)=∫_0 ^(π/2) (((√(√a))(1+tg^2 (t)))/(2(√(tg(t))))).(dt/(a(1+tg^2 (t))))  =(1/(2a^(3/4) )).∫_0 ^(π/2) cos^(1/2) (t)sin^((−1)/2) (t)dt  =(1/(2a^(3/4) )).((β((3/4),(1/4)))/2)=(1/(4a^(3/4) )).((Γ((1/4))Γ((3/4)))/(Γ(1)))=(π/(4a^(3/4) sin((π/4))))  =((π(√2))/(4a^(3/4) ))=f(a)  g(a)=−f′(a)=((3π(√2))/(16a^(7/4) )).  ∫_0 ^(+∞) (dx/(x^4 +1))=f(1)=((π(√2))/4)=(π/(2(√2)))  ∫_0 ^(+∞) (dx/(2x^4 +8))=((f(4))/2)=((π(√2))/(8(2^(3/2) )))=(π/(16))  ∫(dx/((1+x^4 )^2 ))=g(1)=−f′(1)=((3π(√2))/(16))  ∫_0 ^(+∞) (dx/((2x^4 +8)^2 ))=(1/4)g(4)=−((f′(4))/4)=((3π(√2))/(64.4^(7/4) ))  =((3π)/(512))

x=atg(t)f(a)=0π2a(1+tg2(t))2tg(t).dta(1+tg2(t))=12a34.0π2cos12(t)sin12(t)dt=12a34.β(34,14)2=14a34.Γ(14)Γ(34)Γ(1)=π4a34sin(π4)=π24a34=f(a)g(a)=f(a)=3π216a74.0+dxx4+1=f(1)=π24=π220+dx2x4+8=f(4)2=π28(232)=π16dx(1+x4)2=g(1)=f(1)=3π2160+dx(2x4+8)2=14g(4)=f(4)4=3π264.474=3π512

Commented by mathmax by abdo last updated on 19/Mar/20

thank you sir.

thankyousir.

Commented by mind is power last updated on 19/Mar/20

withe pleasur

withepleasur

Terms of Service

Privacy Policy

Contact: info@tinkutara.com