Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 38718 by maxmathsup by imad last updated on 28/Jun/18

1) find f(x)=∫_0 ^π  ln(2+x cosθ)dθ  2) calculate ∫_0 ^π  ln(2  +cosθ)dθ

1)findf(x)=0πln(2+xcosθ)dθ2)calculate0πln(2+cosθ)dθ

Commented by math khazana by abdo last updated on 30/Jun/18

1) we have f^′ (x)= ∫_0 ^π    ((cosθ)/(2+x cosθ))dθ changement  tan((θ/2))=t ⇒f^′ (x)=∫_0 ^∞     (((1−t^2 )/(1+t^2 ))/(2+x((1−t^2 )/(1+t^2 ))))  ((2dt)/(1+t^2 ))  f^′ (x) = 2∫_0 ^∞      ((1−t^2 )/((1+t^2 )(2+2t^2  +x−xt^2 )))dt  =2 ∫_0 ^∞      ((1−t^2 )/((1+t^2 ){(2−x)t^2  +x+2}))dt let   f^′ (x) =∫_(−∞) ^(+∞)     ((1−t^2 )/((1+t^2 ){ (2−x)t^(2 )  +x+2})) dt   let  ϕ(z)= ((1−z^2 )/((z^2 +1){ (2−x)z^2  +x+2})) if x≠2  ϕ(z) = ((1−z^2 )/((2−x)(z^2 +1){ z^2  +((2+x)/(2−x))}))  case 1   ((2+x)/(2−x))>0 ⇒  ϕ(z)= ((1−z^2 )/((2−x)(z−i)(z+i)(z−i(√((2+x)/(2−x))))(z+i(√((2+x)/(2−x))))))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ Res(ϕ,i) +Res(ϕ,i(√((2+x)/(2−x))))}  Res(ϕ,i) = (2/((2−x)(2i)(−1 +((2+x)/(2−x)))))  = ((−i(2−x))/((2−x)(−2+x+2+x))) =((−i)/(2x))  Res(ϕ,i(√((2+x)/(2−x)))) =  ((1 +((2+x)/(2−x)))/((2−x)(−((2+x)/(2−x)) +1)2i(√((2+x)/(2−x)))))  =  (4/((2−x)^2 (((−2−x+2−x)/(2−x)))2i(√((2+x)/(2−x)))))  = ((−2i)/((2−x)(−2x)((√(2+x))/(√(2−x))))) = (i/(√(4−x^2 )))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ ((−i)/(2x)) + (i/(√(4−x^2 )))}  =(π/x) +((2π)/(√(4−x^2 ))) =f^′ (x) ⇒  f(x) =πln∣x∣  + 2π ∫   (dx/(√(4−x^2 )))  +c  changement  x=2u give ∫   (dx/(√(4−x^2 ))) = ∫   ((2du)/(2(√(1−u^2 ))))  = arcsin((x/2)) ⇒f(x)=π ln∣x∣ +2π arcsin((x/2)) +c  f(1) =2π (π/2) +c = π^2  +c ⇒c=f(1) −π^2  ⇒  f(x) =π ln∣x∣ +2π arcsin((x/2)) +f(1)−π^2  .

1)wehavef(x)=0πcosθ2+xcosθdθchangementtan(θ2)=tf(x)=01t21+t22+x1t21+t22dt1+t2f(x)=201t2(1+t2)(2+2t2+xxt2)dt=201t2(1+t2){(2x)t2+x+2}dtletf(x)=+1t2(1+t2){(2x)t2+x+2}dtletφ(z)=1z2(z2+1){(2x)z2+x+2}ifx2φ(z)=1z2(2x)(z2+1){z2+2+x2x}case12+x2x>0φ(z)=1z2(2x)(zi)(z+i)(zi2+x2x)(z+i2+x2x)+φ(z)dz=2iπ{Res(φ,i)+Res(φ,i2+x2x)}Res(φ,i)=2(2x)(2i)(1+2+x2x)=i(2x)(2x)(2+x+2+x)=i2xRes(φ,i2+x2x)=1+2+x2x(2x)(2+x2x+1)2i2+x2x=4(2x)2(2x+2x2x)2i2+x2x=2i(2x)(2x)2+x2x=i4x2+φ(z)dz=2iπ{i2x+i4x2}=πx+2π4x2=f(x)f(x)=πlnx+2πdx4x2+cchangementx=2ugivedx4x2=2du21u2=arcsin(x2)f(x)=πlnx+2πarcsin(x2)+cf(1)=2ππ2+c=π2+cc=f(1)π2f(x)=πlnx+2πarcsin(x2)+f(1)π2.

Commented by math khazana by abdo last updated on 30/Jun/18

case 2 ((2+x)/(2−x)) <0  we follow the same method..

case22+x2x<0wefollowthesamemethod..

Commented by math khazana by abdo last updated on 30/Jun/18

error from line 15  Res(ϕ,i(√((2+x)/(2−x)))) =  (i/(x(√(4−x^2 )))) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ ((−i)/(2x))  +(i/(x(√(4−x^2 ))))}  = (π/x)  −((2π)/(x(√(4−x^2 )))) =f^′ (x) ⇒  f(x) =πln∣x∣  −2π ∫     (dx/(x(√(4−x^2 ))))  .changement  x= 2sint ⇒  ∫   (dx/(x(√(4−x^2 )))) = ∫   ((2cost)/(2sint 2 cost))dt  =(1/2) ∫   (dt/(sint )) then chang.tan((t/2))=u  =(1/2) ∫    (1/((2u)/(1+u^2 ))) ((2du)/(1+u^2 )) =(1/2) ∫  (du/u) =(1/2)ln∣tan((t/2)))  =(1/2)ln∣ tan((1/2) arcsin((x/2)))∣⇒  f(x)=πln∣x∣ −πln∣ tan((1/2)arcsin((x/2))∣  +c  f(1) = c ⇒  f(x)=πln∣x∣ −πln∣tan((1/2)arcsin((x/2))∣ + ∫_0 ^π ln(2+cosθ)dθ

errorfromline15Res(φ,i2+x2x)=ix4x2+φ(z)dz=2iπ{i2x+ix4x2}=πx2πx4x2=f(x)f(x)=πlnx2πdxx4x2.changementx=2sintdxx4x2=2cost2sint2costdt=12dtsintthenchang.tan(t2)=u=1212u1+u22du1+u2=12duu=12lntan(t2))=12lntan(12arcsin(x2))∣⇒f(x)=πlnxπlntan(12arcsin(x2)+cf(1)=cf(x)=πlnxπlntan(12arcsin(x2)+0πln(2+cosθ)dθ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com