Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 85162 by mathmax by abdo last updated on 19/Mar/20

1)find ∫ ln((√x)+(√(x+1)))dx  2) calculate ∫_0 ^1 ln((√x)+(√(x+1)))dx

1)findln(x+x+1)dx2)calculate01ln(x+x+1)dx

Commented by mathmax by abdo last updated on 01/Apr/20

1) let f(t) =∫ ln(t+(√x) +(√(x+1)))dx  we have f^′ (t) ∫   (1/(t+(√x)+(√(x+1))))dx =_((√x)=u)   ∫   ((2udu)/(t+u+(√(u^2  +1))))  =_(u =sh(α))   2 ∫  ((sh(α)ch(α)dα)/(t+sh(α)+ch(α))) = ∫   ((sh(2α))/(t+shα +chα))dα  =∫  (((e^(2α) −e^(−α) )/2)/(t+ e^α ))dα  =_(e^α =z)   (1/2)∫  ((z^2 −z^(−2) )/(t+z)) (dz/z)  =(1/2)∫  ((z^2 −z^(−2) )/(z(t+z)))dz =(1/2)∫ ((z^4 −1)/(z^3 (t+z)))dz  let decompose  F(z) =((z^4 −1)/(z^3 (z+t)))⇒F(z) =((z^4 −1)/(z^4 +tz^3 )) =((z^4 +tz^3 −tz^3 −1)/(z^4  +tz^3 )) =1−((tz^3  +1)/(z^4 +tz^3 ))  w(z)=((tz^(3 ) +1)/(z^3 (z+t))) =(a/z)+(b/z^2 )+(c/z^3 ) +(d/(z+t))  c =(1/t)  ,    d =((1−t^4 )/(−t^3 )) =((t^4 −1)/t^3 ) ⇒w(z) =(a/z)+(b/z^2 ) +(1/(tz^3 )) +((t^4 −1)/(t^3 (z+t)))  lim_(z→+∞)  zw(z) =t =a +d ⇒a =t−d =t−((t^4 −1)/t^3 ) =(1/t^3 ) ⇒  w(z) =(1/(t^3 z)) +(b/z^2 ) +(1/(tz^3 )) +((t^4 −1)/(t^3 (z+t)))  w(1) =1  =(1/t^3 ) +b +(1/t) +((t^4 −1)/(t+1)) =(1/t^3 )+(1/t) +((t^4 −1)/(t+1))  =((t+t^3 )/t^4 ) +((t^4 −1)/(t+1)) =(((t+t^3 )(t+1)+t^8 −t^4 )/(t^4 (t+1)))  =((t^2  +t+t^4 +t^3 +t^8 −t^4 )/(t^4 (t+1))) =((t^8 +t^3 +t^2  +t)/(t^4 (t+1))) =((t^7  +t^2  +t+1)/(t^3 (t+1))) ⇒  b=1−((t^7  +t^2  +t+1)/(t^3 (t+1))) we have F(z)=1−(a/z)−(b/z^2 )−(c/z^3 )−(d/(z+t)) ⇒  ∫ F(z)dz =z−aln∣z∣+(b/z) +(c/(2z^2 )) −d ln∣z+t∣ +C...be continued...

1)letf(t)=ln(t+x+x+1)dxwehavef(t)1t+x+x+1dx=x=u2udut+u+u2+1=u=sh(α)2sh(α)ch(α)dαt+sh(α)+ch(α)=sh(2α)t+shα+chαdα=e2αeα2t+eαdα=eα=z12z2z2t+zdzz=12z2z2z(t+z)dz=12z41z3(t+z)dzletdecomposeF(z)=z41z3(z+t)F(z)=z41z4+tz3=z4+tz3tz31z4+tz3=1tz3+1z4+tz3w(z)=tz3+1z3(z+t)=az+bz2+cz3+dz+tc=1t,d=1t4t3=t41t3w(z)=az+bz2+1tz3+t41t3(z+t)limz+zw(z)=t=a+da=td=tt41t3=1t3w(z)=1t3z+bz2+1tz3+t41t3(z+t)w(1)=1=1t3+b+1t+t41t+1=1t3+1t+t41t+1=t+t3t4+t41t+1=(t+t3)(t+1)+t8t4t4(t+1)=t2+t+t4+t3+t8t4t4(t+1)=t8+t3+t2+tt4(t+1)=t7+t2+t+1t3(t+1)b=1t7+t2+t+1t3(t+1)wehaveF(z)=1azbz2cz3dz+tF(z)dz=zalnz+bz+c2z2dlnz+t+C...becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com