All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 33710 by math khazana by abdo last updated on 22/Apr/18
1)findtheradiusofconvergence?for∑n=1∞xnn(n+1)(n+2)andcalculateitssum2)findthevalueof∑n=1∞(−1)nn2n(n+1)(n+2)
Commented by prof Abdo imad last updated on 27/Apr/18
letputun=1n(n+1)(n+2)wehaveun+1un=n(n+1)(n+2)(n+1)(n+2)(n+3)⇒limn→+∞un+1un=1⇒R=1letdecomposeF(x)=1x(x+1)(x+2)F(x)=ax+bx+1+cx+2a=limx→0xF(x)=12b=limx→−1(x+1)F(x)=1−1=−1c=limx→−2(x+2)F(x)=1(−2)(−1)=12⇒F(x)=12x−1x+1+12(x+2)S(x)=∑n=1∞(12n−1n+1+12(n+2))xn=12∑n=1∞xnn−∑n=1∞xnn+1+12∑n=1∞xnn+2but∑n=1∞xnn=−ln∣1−x∣∑n=1∞xnn+1=∑n=2+∞xn−1n=1x(∑n=2+∞xnn)=1x(−ln∣1−x∣−x)∑n=1∞xnn+2=∑n=3+∞xn−2n=1x2∑n=3+∞xnn=1x2(∑n=1∞xnn−x−x22)=−ln∣1−x∣x2−1x−12⇒S(x)=−12ln∣1−x∣−1x(−ln∣1−x∣−x)−ln∣1−x∣2x2−12x−14S(x)=(−12+1x−12x2)ln∣1−x∣+1−12x−14S(x)=(−12+1x−12x2)ln∣1−x∣−12x+34.2)∑n=1∞(−1)n2nn(n+1)(n+2)=S(−12)=(−12−2−2)ln(32)+1+34=(−12−4)ln(32)+74=74−92(ln(3)−ln(2)).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com