Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 33710 by math khazana by abdo last updated on 22/Apr/18

1) find the radius of convergence?for  Σ_(n=1) ^∞    (x^n /(n(n+1)(n+2))) and calculate its sum    2) find the value of Σ_(n=1) ^∞    (((−1)^n )/(n 2^n (n+1)(n+2)))

1)findtheradiusofconvergence?forn=1xnn(n+1)(n+2)andcalculateitssum2)findthevalueofn=1(1)nn2n(n+1)(n+2)

Commented by prof Abdo imad last updated on 27/Apr/18

let put u_n =(1/(n(n+1)(n+2)))  we have  (u_(n+1) /u_n ) = ((n(n+1)(n+2))/((n+1)(n+2)(n+3))) ⇒lim_(n→+∞) (u_(n+1) /u_n ) =1  ⇒ R =1  let decompose F(x)=(1/(x(x+1)(x+2)))  F(x)= (a/x) +(b/(x+1))+(c/(x+2))  a=lim_(x→0) xF(x)=(1/2)  b=lim_(x→−1) (x+1)F(x)= (1/(−1)) =−1  c=lim_(x→−2) (x+2)F(x)= (1/((−2)(−1))) =(1/2)  ⇒ F(x)= (1/(2x)) −(1/(x+1)) + (1/(2(x+2)))  S(x) =Σ_(n=1) ^∞ ((1/(2n)) −(1/(n+1)) +(1/(2(n+2))))x^n   =(1/2) Σ_(n=1) ^∞   (x^n /n) −Σ_(n=1) ^∞  (x^n /(n+1)) +(1/2) Σ_(n=1) ^∞  (x^n /(n+2)) but  Σ_(n=1) ^∞  (x^n /n) =−ln∣1−x∣  Σ_(n=1) ^∞    (x^n /(n+1)) =Σ_(n=2) ^(+∞)   (x^(n−1) /n) = (1/x)( Σ_(n=2) ^(+∞)   (x^n /n))  =(1/x)(−ln∣1−x∣−x)  Σ_(n=1) ^∞   (x^n /(n+2)) = Σ_(n=3) ^(+∞)    (x^(n−2) /n) =(1/x^2 ) Σ_(n=3) ^(+∞)  (x^n /n)  =(1/x^2 )( Σ_(n=1) ^∞  (x^n /n) −x  −(x^2 /2))  = −((ln∣1−x∣)/x^2 ) −(1/x) −(1/2) ⇒  S(x)=−(1/2)ln∣1−x∣ −(1/x)(−ln∣1−x∣ −x)  −((ln∣1−x∣)/(2x^2 )) −(1/(2x)) −(1/4)  S(x)=(−(1/2) +(1/x) −(1/(2x^2 )))ln∣1−x∣ +1−(1/(2x)) −(1/4)  S(x)=(−(1/2)+(1/x) −(1/(2x^2 )))ln∣1−x∣ −(1/(2x)) +(3/4) .  2) Σ_(n=1) ^∞     (((−1)^n )/(2^n n(n+1)(n+2))) = S(−(1/2))  =(−(1/2) −2 −2)ln((3/2))  +1 +(3/4)  =(−(1/2)−4)ln((3/2)) +(7/4)  = (7/4) −(9/2) (ln(3) −ln(2)) .

letputun=1n(n+1)(n+2)wehaveun+1un=n(n+1)(n+2)(n+1)(n+2)(n+3)limn+un+1un=1R=1letdecomposeF(x)=1x(x+1)(x+2)F(x)=ax+bx+1+cx+2a=limx0xF(x)=12b=limx1(x+1)F(x)=11=1c=limx2(x+2)F(x)=1(2)(1)=12F(x)=12x1x+1+12(x+2)S(x)=n=1(12n1n+1+12(n+2))xn=12n=1xnnn=1xnn+1+12n=1xnn+2butn=1xnn=ln1xn=1xnn+1=n=2+xn1n=1x(n=2+xnn)=1x(ln1xx)n=1xnn+2=n=3+xn2n=1x2n=3+xnn=1x2(n=1xnnxx22)=ln1xx21x12S(x)=12ln1x1x(ln1xx)ln1x2x212x14S(x)=(12+1x12x2)ln1x+112x14S(x)=(12+1x12x2)ln1x12x+34.2)n=1(1)n2nn(n+1)(n+2)=S(12)=(1222)ln(32)+1+34=(124)ln(32)+74=7492(ln(3)ln(2)).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com