Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33129 by prof Abdo imad last updated on 10/Apr/18

1)find the value of   u_n =∫_(−∞) ^(+∞)     ((cos(nx))/(4 +x^2 )) dx  2) find the nature of Σ u_n  .

1)findthevalueofun=+cos(nx)4+x2dx2)findthenatureofΣun.

Commented by prof Abdo imad last updated on 12/Apr/18

let calculate u_n  by redidus theorem.  u_n = Re(  ∫_(−∞) ^(+∞)     (e^(inx) /(4+x^2 ))dx) let consider  ϕ(z) = (e^(inz) /(z^2  +4)) .poles of ϕ?  ϕ(z) = (e^(inz) /((z −2i)(z+2i)))  so the poles are  2i and −2i   ∫_(−∞) ^(+∞)   ϕ(z)dz = 2iπ Res(ϕ,2i)  = (e^(in(2i)) /(4i)) = (e^(−2n) /(4i)) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz = 2iπ (e^(−2n) /(4i))  = (π/2) e^(−2n)   ⇒ u_n  = (π/2) e^(−2n)   2)  Σ_(n=0) ^(+∞)  u_n    =(π/2) Σ_(n=0) ^∞   (e^(−2) )^n  =(π/2) (1/(1−e^(−2) ))  = (π/(2( 1 −(1/e^2 )))) = ((π e^2 )/(2(e^2  −1))) .

letcalculateunbyredidustheorem.un=Re(+einx4+x2dx)letconsiderφ(z)=einzz2+4.polesofφ?φ(z)=einz(z2i)(z+2i)sothepolesare2iand2i+φ(z)dz=2iπRes(φ,2i)=ein(2i)4i=e2n4i+φ(z)dz=2iπe2n4i=π2e2nun=π2e2n2)n=0+un=π2n=0(e2)n=π211e2=π2(11e2)=πe22(e21).

Commented by prof Abdo imad last updated on 12/Apr/18

remark  Im( ∫_(−∞) ^(+∞)   (e^(inx) /(x^2  +4))dx)= ∫_(−∞) ^(+∞)   ((sin(nx))/(x^2  +4))dx=0  brcausethe function is odd.

remarkIm(+einxx2+4dx)=+sin(nx)x2+4dx=0brcausethefunctionisodd.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com