All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 152208 by SOMEDAVONG last updated on 26/Aug/21
1.for∀x>0.findthevalueofmto1+log5(x2+1)⩾log5(mx2+4x+m)verify∀x.
Answered by Rasheed.Sindhi last updated on 26/Aug/21
1+log5(x2+1)⩾log5(mx2+4x+m)log55+log5(x2+1)⩾log5(mx2+4x+m)log5(5(x2+1))⩾log5(mx2+4x+m)5(x2+1)⩾mx2+4x+m(5−m)x2−4x+5−m⩾0Continue....
Commented by SOMEDAVONG last updated on 26/Aug/21
Thankssir
Commented by 1549442205PVT last updated on 26/Aug/21
Putf(x)=(5−m)x2−4x+5−mi)Form=5weget−4x⩾0⇔x⩽0,soitisrejectedii)Form<5f(x)⩾0∀x>0ifandonlyif[f(x)havehastworootsx1⩽x2⩽0(2)△′=4+m(5−m)<0(1)(1)⇔−m2+5m+4<0⇔m2−5m−4>0⇔m∈(−∞,5−412)∪(5+412,∞)Combiningtotheconditionm<5wegetm∈(−∞,5−412)(2)⇔{△′⩾0x1+x22=25−m⩽0⇔{m2−5m−4⩽0m⩾5thisiscontradictiontothehypothesisthatm<5.Hencethiscasedon′toccurii)Form>5don′texistm
Terms of Service
Privacy Policy
Contact: info@tinkutara.com