Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 33335 by prof Abdo imad last updated on 14/Apr/18

1) give ?D_(n−1) (o)  for f(x)= (1/(x+2))  2) drcompose inside R(x) the fraction  F(x) = (1/(x^n (x+2)))

1)give?Dn1(o)forf(x)=1x+22)drcomposeinsideR(x)thefractionF(x)=1xn(x+2)

Commented by prof Abdo imad last updated on 25/Apr/18

we have f(x) = Σ_(k=0) ^(n−1)  ((f^((k)) (0))/(k!)) x^k  +(x^n /(n!)) ξ(x) with  ξ(x)_(x→0) →0  but we have f^((k)) (x)=(((−1)^k k!)/((x+2)^(k+1) )) ⇒  f^((k)) (0) = (((−1)^k  k!)/2^(k+1) ) ⇒  f(x)= Σ_(k=0) ^(n−1)    (((−1)^k )/2^(k+1) ) x^k   + (x^n /(n!)) ξ(x)  2) F(x) = Σ_(k=1) ^n   (λ_k /x^k ) + (a/(x+2))  a =  lim_(x→−2) (x+2)F(x) = (1/((−2)^n )) =(((−1)^n )/(2^n (x+2))) ⇒  F(x)= Σ_(k=1) ^n   (λ_k /x^k )  + (((−1)^n )/(2^n (x+2)))  = Σ_(k=1) ^(n−1)   (λ_k /x^k )  + (λ_n /x^n ) +(((−1)^n )/(2^n (x+2)))  λ_n  =lim_(x→0)  x^n  F(x)= (1/2)  from another side  F(x)= (1/x^n )( Σ_(k=0) ^(n−1)   (((−1)^k )/2^k ) x^k   +(x^n /(n!)) ξ(x))  = Σ_(k=0) ^(n−1)   (((−1)^k )/(2^k  x^(n−k) ))  + (1/(n!)) ξ(x) ch. of indice n−k=p  F(x)= Σ_(p=1) ^n   (((−1)^(n−p) )/(2^(n−p)  x^p ))  + (1/(n!)) ξ(x)  = Σ_(k=1) ^n    (((−1)^(n−k) )/(2^(n−k)  x^k ))  +(1/(n!)) ξ(x) ⇒ λ_k  = (((−1)^(n−k) )/2^(n−k) ) and  F(x)= Σ_(k=1) ^(n−1)     (((−1)^(n−k) )/(2^(n−k)   x^k ))  +(1/(2x^n ))  +(((−1)^n )/(2^n (x+2))) .

wehavef(x)=k=0n1f(k)(0)k!xk+xnn!ξ(x)withξ(x)x00butwehavef(k)(x)=(1)kk!(x+2)k+1f(k)(0)=(1)kk!2k+1f(x)=k=0n1(1)k2k+1xk+xnn!ξ(x)2)F(x)=k=1nλkxk+ax+2a=limx2(x+2)F(x)=1(2)n=(1)n2n(x+2)F(x)=k=1nλkxk+(1)n2n(x+2)=k=1n1λkxk+λnxn+(1)n2n(x+2)λn=limx0xnF(x)=12fromanothersideF(x)=1xn(k=0n1(1)k2kxk+xnn!ξ(x))=k=0n1(1)k2kxnk+1n!ξ(x)ch.ofindicenk=pF(x)=p=1n(1)np2npxp+1n!ξ(x)=k=1n(1)nk2nkxk+1n!ξ(x)λk=(1)nk2nkandF(x)=k=1n1(1)nk2nkxk+12xn+(1)n2n(x+2).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com