Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 65288 by mathmax by abdo last updated on 27/Jul/19

1) let f(x) =∫_0 ^(+∞)    (dt/(t^3  +x^3 ))   with x>0  calculate f(x)  2) find also g(x) =∫_0 ^∞   (dt/((t^3  +x^3 )^2 ))  3) find the values of integrals  ∫_0 ^∞    (dt/(t^3  +1))  and ∫_0 ^∞ (dt/((t^3  +1)^2 ))  4) give f^((n)) (x) at form of integrals.

1)letf(x)=0+dtt3+x3withx>0calculatef(x)2)findalsog(x)=0dt(t3+x3)23)findthevaluesofintegrals0dtt3+1and0dt(t3+1)24)givef(n)(x)atformofintegrals.

Commented by mathmax by abdo last updated on 30/Jul/19

1) f(x)=∫_0 ^∞   (dt/(t^3  +x^3 ))dt ⇒f(x) =∫_0 ^∞    (dt/((t+x)(t^2 −xt +x^2 )))  let decompose F(t) =(1/((t+x)(t^2 −xt +x^2 )))  F(t) =(a/(t+x)) +((bt +c)/(t^2 −xt +x^2 ))     (x>0)  a =lim_(t→−x) (t+x)F(t) =(1/(3x^2 ))  lim_(t→+∞) tF(t) =0 =a+b ⇒b =−(1/(3x^2 )) ⇒F(t)=(1/(3x^2 (t+x))) +((−(1/(3x^2 ))t+c)/(t^2 −xt+x^2 ))  F(0) =(1/x^3 ) =(1/(3x^3 )) +(c/x^2 ) ⇒c =0 ⇒1=(1/3) +xc ⇒xc =(2/3) ⇒c =(2/(3x)) ⇒  F(t) =(1/(3x^2 (t+x))) +((−(t/(3x^2 ))+(2/(3x)))/(t^2 −xt+x^2 )) =(1/(3x^2 (t+x)))−(1/(3x^2 )) ((t−2x)/(t^2 −xt +x^2 )) ⇒  f(x) =(1/(3x^2 )){ ∫_0 ^∞   (dt/(t+x)) −∫_0 ^∞   ((t−2x)/(t^2 −xt +x^2 ))}  =(1/(3x^2 )){ ∫_0 ^∞  (dt/(t+x)) −(1/2)∫_0 ^∞   ((2t−x+x)/(t^2 −xt +x^2 ))  +∫_0 ^∞   ((2x)/(t^2 −xt+x^2 ))dt}  =(1/(3x^2 )){  [ln∣((t+x)/(√(t^2 −xt+x^2 )))∣]_0 ^(+∞)  +((3x)/2)∫_0 ^∞   (dt/(t^2 −xt +x^2 ))}  =(1/(2x))∫_0 ^∞    (dt/(t^2 −xt +x^2 ))   and   ∫_0 ^∞   (dt/(t^2 −xt +x^2 )) =∫_0 ^∞   (dt/(t^2 −2(x/2)t +(x^2 /4)+x^2 −(x^2 /4)))  =∫_0 ^∞    (dt/((t−(x/2))^2  +(3/4)x^2 )) =_(t−(x/2)=((√3)/2)xu)     ∫_(−(1/(√3))) ^(+∞)    (1/((3/4)x^2 (1+u^2 )))((√3)/2) xdu  =(4/(3x^2 )) ((√3)/2) x ∫_(−(1/(√3))) ^(+∞)   (du/(1+u^2 )) =(2/(x(√3)))[arctan(u)]_(−(1/(√3))) ^(+∞)   =(2/(x(√3))){(π/2) +arctan((1/(√3)))} =(2/(x(√3))){π −arctan((√3)) =(2/(x(√3))){π−(π/3)}  =(2/(x(√3)))((2π)/3) =((4π)/(3x(√3))) ⇒f(x)=(1/(2x)) ((4π)/(3x(√3))) =((2π)/(3x^2 (√3))) ⇒  f(x) =((2π)/(3(√3)x^2 ))       (x>0)

1)f(x)=0dtt3+x3dtf(x)=0dt(t+x)(t2xt+x2)letdecomposeF(t)=1(t+x)(t2xt+x2)F(t)=at+x+bt+ct2xt+x2(x>0)a=limtx(t+x)F(t)=13x2limt+tF(t)=0=a+bb=13x2F(t)=13x2(t+x)+13x2t+ct2xt+x2F(0)=1x3=13x3+cx2c=01=13+xcxc=23c=23xF(t)=13x2(t+x)+t3x2+23xt2xt+x2=13x2(t+x)13x2t2xt2xt+x2f(x)=13x2{0dtt+x0t2xt2xt+x2}=13x2{0dtt+x1202tx+xt2xt+x2+02xt2xt+x2dt}=13x2{[lnt+xt2xt+x2]0++3x20dtt2xt+x2}=12x0dtt2xt+x2and0dtt2xt+x2=0dtt22x2t+x24+x2x24=0dt(tx2)2+34x2=tx2=32xu13+134x2(1+u2)32xdu=43x232x13+du1+u2=2x3[arctan(u)]13+=2x3{π2+arctan(13)}=2x3{πarctan(3)=2x3{ππ3}=2x32π3=4π3x3f(x)=12x4π3x3=2π3x23f(x)=2π33x2(x>0)

Commented by mathmax by abdo last updated on 30/Jul/19

2) we have f(x) =∫_0 ^∞   (dt/(t^3  +x^3 )) ⇒f^′ (x) =−∫_0 ^∞   ((3x^2 )/((t^3  +x^3 )^2 ))dt  =−3x^2  ∫_0 ^∞     (dt/((t^3  +x^3 )^2 )) =−3x^2 g(x) ⇒g(x) =−(1/(3x^2 ))f^′ (x)  f(x) =((2π)/(3(√3)x^2 )) ⇒f^′ (x) =((2π)/(3(√3)))(−((2x)/x^4 )) =−((4π)/(3(√3)x^3 )) ⇒  g(x) =−(1/(3x^2 ))×(−((4π)/(3(√3)x^3 ))) =((4π)/(9(√3)x^5 ))

2)wehavef(x)=0dtt3+x3f(x)=03x2(t3+x3)2dt=3x20dt(t3+x3)2=3x2g(x)g(x)=13x2f(x)f(x)=2π33x2f(x)=2π33(2xx4)=4π33x3g(x)=13x2×(4π33x3)=4π93x5

Commented by mathmax by abdo last updated on 30/Jul/19

3) ∫_0 ^∞    (dt/(t^3  +1)) =f(1) =((2π)/(3(√3)))

3)0dtt3+1=f(1)=2π33

Commented by mathmax by abdo last updated on 30/Jul/19

∫_0 ^∞     (dt/((t^3 +1)^2 )) =g(1) =((4π)/(9(√3)))

0dt(t3+1)2=g(1)=4π93

Terms of Service

Privacy Policy

Contact: info@tinkutara.com