All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 100054 by M±th+et+s last updated on 24/Jun/20
In,m=∫01∫01(ln(x))n(ln(y))m1−xydxdy
Answered by maths mind last updated on 24/Jun/20
since∣xy∣<111−xy=∑k⩾0(xy)kI=∫∫lnn(x)lnm(y)1−xydxdy=∫01∫01∑k⩾0(xkyk)lnn(x)lnm(y)dxdy=∑k⩾0∫01∫01(xklnn(x)dx)yklnm(y)dyf(s)=∫01xklns(x)dx=∫0+∞(−t)se−(k+1)tdtt→(k+1)t⇔f(s)=(−1)s∫0+∞tse−t(k+1)s+1dt=(−1)sΓ(s+1)(k+1)s+1I=∑k⩾0∫01xklnn(x)dx.∫01yklnm(x)dx=∑k⩾0(−1)nΓ(n+1)(k+1)n+1.(−1)mΓ(m+1)(k+1)m+1=(−1)n+mΓ(n+1)Γ(m+1).∑k⩾01(1+k)n+m+2=(−1)n+mn!.m!.ζ(n+m+2)⇔In,m=∫01∫01lnn(x)lnm(y)1−xydxdy=(−1)n+mn!.m!ζ(n+m+2)
Commented by M±th+et+s last updated on 24/Jun/20
coolsir.thankyou
Commented by maths mind last updated on 24/Jun/20
withepleasur
Terms of Service
Privacy Policy
Contact: info@tinkutara.com