Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 100240 by Ar Brandon last updated on 25/Jun/20

Find  (x,y)∈R such  that;  ((x+y)/(x^2 −xy+y^2 ))=(7/2)    updated from (2/7)→(7/2). Sorry, it was a mistake.

$$\mathrm{Find}\:\:\left(\mathrm{x},\mathrm{y}\right)\in\mathbb{R}\:\mathrm{such}\:\:\mathrm{that}; \\ $$$$\frac{\mathrm{x}+\mathrm{y}}{\mathrm{x}^{\mathrm{2}} −\mathrm{xy}+\mathrm{y}^{\mathrm{2}} }=\frac{\mathrm{7}}{\mathrm{2}} \\ $$$$ \\ $$$${updated}\:{from}\:\frac{\mathrm{2}}{\mathrm{7}}\rightarrow\frac{\mathrm{7}}{\mathrm{2}}.\:{Sorry},\:{it}\:{was}\:{a}\:{mistake}. \\ $$

Commented by Dwaipayan Shikari last updated on 25/Jun/20

{x should be ±(1−(√2))  {y should be (√2)±1    x+y=2,  x=2−y  (x+y)^2 =7+3xy     {Assuming}  4=7+3xy   so  xy=−1⇒(2−y)y=−1                                                      ⇒y^2 −2y−1=0                                                    ⇒y=((2±(√8))/2)=1±(√2)  x(1±(√)2)=−1⇒x=((−1)/(1±(√2)))=(1±(√2))    {But it has infinite many solutions}  If we go for all solutions  x+y=2p  {p≠0  and x^2 −xy+y^2 =7p    (x+y)^2 =7p+3xy    4p^2 =7p+3xy    xy=((4p^2 −7p)/3)⇒x(2p−x)=((4p^2 −7p)/3)⇒3x^2 −6px+4p^2 −7p=0                                                          x=((6p±(√(36p^2 −48p^2 +84p)))/6)=((6p±(√(84p−12p^2 )))/6)  And   y=((8p^2 −14p)/(6p±(√(84p−12p^2 ))))

$$\left\{\mathrm{x}\:\mathrm{should}\:\mathrm{be}\:\pm\left(\mathrm{1}−\sqrt{\mathrm{2}}\right)\right. \\ $$$$\left\{\mathrm{y}\:\mathrm{should}\:\mathrm{be}\:\sqrt{\mathrm{2}}\pm\mathrm{1}\right. \\ $$$$ \\ $$$$\mathrm{x}+\mathrm{y}=\mathrm{2},\:\:\mathrm{x}=\mathrm{2}−\mathrm{y} \\ $$$$\left(\mathrm{x}+\mathrm{y}\right)^{\mathrm{2}} =\mathrm{7}+\mathrm{3xy}\:\:\:\:\:\left\{\mathrm{Assuming}\right\} \\ $$$$\mathrm{4}=\mathrm{7}+\mathrm{3xy}\:\:\:\mathrm{so}\:\:\mathrm{xy}=−\mathrm{1}\Rightarrow\left(\mathrm{2}−\mathrm{y}\right)\mathrm{y}=−\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\mathrm{y}^{\mathrm{2}} −\mathrm{2y}−\mathrm{1}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\mathrm{y}=\frac{\mathrm{2}\pm\sqrt{\mathrm{8}}}{\mathrm{2}}=\mathrm{1}\pm\sqrt{\mathrm{2}} \\ $$$$\mathrm{x}\left(\mathrm{1}\pm\sqrt{}\mathrm{2}\right)=−\mathrm{1}\Rightarrow\mathrm{x}=\frac{−\mathrm{1}}{\mathrm{1}\pm\sqrt{\mathrm{2}}}=\left(\mathrm{1}\pm\sqrt{\mathrm{2}}\right) \\ $$$$ \\ $$$$\left\{\mathrm{But}\:\mathrm{it}\:\mathrm{has}\:\mathrm{infinite}\:\mathrm{many}\:\mathrm{solutions}\right\} \\ $$$$\mathrm{If}\:\mathrm{we}\:\mathrm{go}\:\mathrm{for}\:\mathrm{all}\:\mathrm{solutions} \\ $$$$\mathrm{x}+\mathrm{y}=\mathrm{2p}\:\:\left\{\mathrm{p}\neq\mathrm{0}\right. \\ $$$$\mathrm{and}\:\mathrm{x}^{\mathrm{2}} −\mathrm{xy}+\mathrm{y}^{\mathrm{2}} =\mathrm{7p} \\ $$$$\:\:\left(\mathrm{x}+\mathrm{y}\right)^{\mathrm{2}} =\mathrm{7p}+\mathrm{3xy} \\ $$$$\:\:\mathrm{4p}^{\mathrm{2}} =\mathrm{7p}+\mathrm{3xy} \\ $$$$\:\:\mathrm{xy}=\frac{\mathrm{4p}^{\mathrm{2}} −\mathrm{7p}}{\mathrm{3}}\Rightarrow\mathrm{x}\left(\mathrm{2p}−\mathrm{x}\right)=\frac{\mathrm{4p}^{\mathrm{2}} −\mathrm{7p}}{\mathrm{3}}\Rightarrow\mathrm{3x}^{\mathrm{2}} −\mathrm{6px}+\mathrm{4p}^{\mathrm{2}} −\mathrm{7p}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{x}=\frac{\mathrm{6p}\pm\sqrt{\mathrm{36p}^{\mathrm{2}} −\mathrm{48p}^{\mathrm{2}} +\mathrm{84p}}}{\mathrm{6}}=\frac{\mathrm{6p}\pm\sqrt{\mathrm{84p}−\mathrm{12p}^{\mathrm{2}} }}{\mathrm{6}} \\ $$$$\mathrm{And}\:\:\:\mathrm{y}=\frac{\mathrm{8p}^{\mathrm{2}} −\mathrm{14p}}{\mathrm{6p}\pm\sqrt{\mathrm{84p}−\mathrm{12p}^{\mathrm{2}} }} \\ $$

Commented by mr W last updated on 25/Jun/20

the eqn. is an ellipse without the  point(0,0). it has infinite points,  i.e. infinite solutions.

$${the}\:{eqn}.\:{is}\:{an}\:{ellipse}\:{without}\:{the} \\ $$$${point}\left(\mathrm{0},\mathrm{0}\right).\:{it}\:{has}\:{infinite}\:{points}, \\ $$$${i}.{e}.\:{infinite}\:{solutions}. \\ $$

Commented by Dwaipayan Shikari last updated on 25/Jun/20

Sir, you are right but i go for only one solution

$$\mathrm{Sir},\:\mathrm{you}\:\mathrm{are}\:\mathrm{right}\:\mathrm{but}\:\mathrm{i}\:\mathrm{go}\:\mathrm{for}\:\mathrm{only}\:\mathrm{one}\:\mathrm{solution} \\ $$

Commented by mr W last updated on 25/Jun/20

Commented by mr W last updated on 25/Jun/20

you can set x=1 for example, then  you can find two values for y:  ((1+y)/(1−y+y^2 ))=(2/7)

$${you}\:{can}\:{set}\:{x}=\mathrm{1}\:{for}\:{example},\:{then} \\ $$$${you}\:{can}\:{find}\:{two}\:{values}\:{for}\:{y}: \\ $$$$\frac{\mathrm{1}+{y}}{\mathrm{1}−{y}+{y}^{\mathrm{2}} }=\frac{\mathrm{2}}{\mathrm{7}} \\ $$

Commented by mr W last updated on 25/Jun/20

the general solution is  x=k±(√((k(7−k))/3))  y=k∓(√((k(7−k))/3))  with 0<k≤7

$${the}\:{general}\:{solution}\:{is} \\ $$$${x}={k}\pm\sqrt{\frac{{k}\left(\mathrm{7}−{k}\right)}{\mathrm{3}}} \\ $$$${y}={k}\mp\sqrt{\frac{{k}\left(\mathrm{7}−{k}\right)}{\mathrm{3}}} \\ $$$${with}\:\mathrm{0}<{k}\leqslant\mathrm{7} \\ $$

Commented by Dwaipayan Shikari last updated on 25/Jun/20

Yes sir i am a high school student .Thanking you for correction

$$\mathrm{Yes}\:\mathrm{sir}\:\mathrm{i}\:\mathrm{am}\:\mathrm{a}\:\mathrm{high}\:\mathrm{school}\:\mathrm{student}\:.\mathrm{Thanking}\:\mathrm{you}\:\mathrm{for}\:\mathrm{correction} \\ $$

Commented by Ar Brandon last updated on 25/Jun/20

Thank you !

Commented by Ar Brandon last updated on 25/Jun/20

Thanks for your idea !

Answered by Ar Brandon last updated on 25/Jun/20

((x+y)/(x^2 −xy+y^2 ))=(7/2)⇒((x+y)/((x−(y/2))^2 −(y^2 /4)+y^2 ))=((x+y)/((x−(y/2))^2 +((3y^2 )/4)))=(7/2)  ⇒ { ((x+y=7⇒x=7−y)),(((x−(y/2))^2 +((3y^2 )/4)=2)) :}⇒(7−y−(y/2))^2 +((3y^2 )/4)=2  ⇒(7−((3y)/2))^2 +((3y^2 )/4)=2⇒49−21y+((9y^2 )/4)+((3y^2 )/4)=2⇒3y^2 −21y+47=0  ⇒y=((21±(√(21^2 −4(3×47))))/(2(3)))=((21±(√(−123)))/6)    I arrived at this, but it′s obvious that this isn′t   correct, as y∉R. Anyone to help me out, please?

$$\frac{\mathrm{x}+\mathrm{y}}{\mathrm{x}^{\mathrm{2}} −\mathrm{xy}+\mathrm{y}^{\mathrm{2}} }=\frac{\mathrm{7}}{\mathrm{2}}\Rightarrow\frac{\mathrm{x}+\mathrm{y}}{\left(\mathrm{x}−\frac{\mathrm{y}}{\mathrm{2}}\right)^{\mathrm{2}} −\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{4}}+\mathrm{y}^{\mathrm{2}} }=\frac{\mathrm{x}+\mathrm{y}}{\left(\mathrm{x}−\frac{\mathrm{y}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{3y}^{\mathrm{2}} }{\mathrm{4}}}=\frac{\mathrm{7}}{\mathrm{2}} \\ $$$$\Rightarrow\begin{cases}{\mathrm{x}+\mathrm{y}=\mathrm{7}\Rightarrow\mathrm{x}=\mathrm{7}−\mathrm{y}}\\{\left(\mathrm{x}−\frac{\mathrm{y}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{3y}^{\mathrm{2}} }{\mathrm{4}}=\mathrm{2}}\end{cases}\Rightarrow\left(\mathrm{7}−\mathrm{y}−\frac{\mathrm{y}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{3y}^{\mathrm{2}} }{\mathrm{4}}=\mathrm{2} \\ $$$$\Rightarrow\left(\mathrm{7}−\frac{\mathrm{3y}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{3y}^{\mathrm{2}} }{\mathrm{4}}=\mathrm{2}\Rightarrow\mathrm{49}−\mathrm{21y}+\frac{\mathrm{9y}^{\mathrm{2}} }{\mathrm{4}}+\frac{\mathrm{3y}^{\mathrm{2}} }{\mathrm{4}}=\mathrm{2}\Rightarrow\mathrm{3y}^{\mathrm{2}} −\mathrm{21y}+\mathrm{47}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{y}=\frac{\mathrm{21}\pm\sqrt{\mathrm{21}^{\mathrm{2}} −\mathrm{4}\left(\mathrm{3}×\mathrm{47}\right)}}{\mathrm{2}\left(\mathrm{3}\right)}=\frac{\mathrm{21}\pm\sqrt{−\mathrm{123}}}{\mathrm{6}} \\ $$$$ \\ $$$${I}\:{arrived}\:{at}\:{this},\:{but}\:{it}'{s}\:{obvious}\:{that}\:{this}\:{isn}'{t}\: \\ $$$${correct},\:{as}\:{y}\notin\mathbb{R}.\:{Anyone}\:{to}\:{help}\:{me}\:{out},\:{please}? \\ $$

Commented by mr W last updated on 25/Jun/20

you can only say  x+y=2k  x^2 −xy+y^2 =7k≠0  there are infinite solutions for x,y∈R.  x+y=2k  (x+y)^2 −3xy=7k ⇒xy=((4k^2 −7k)/3)  x, y are roots of  z^2 −2kz+((4k^2 −7k)/3)=0  ⇒x,y=k±(√((k(7−k))/3))    (k≠0)

$${you}\:{can}\:{only}\:{say} \\ $$$${x}+{y}=\mathrm{2}{k} \\ $$$${x}^{\mathrm{2}} −{xy}+{y}^{\mathrm{2}} =\mathrm{7}{k}\neq\mathrm{0} \\ $$$${there}\:{are}\:{infinite}\:{solutions}\:{for}\:{x},{y}\in{R}. \\ $$$${x}+{y}=\mathrm{2}{k} \\ $$$$\left({x}+{y}\right)^{\mathrm{2}} −\mathrm{3}{xy}=\mathrm{7}{k}\:\Rightarrow{xy}=\frac{\mathrm{4}{k}^{\mathrm{2}} −\mathrm{7}{k}}{\mathrm{3}} \\ $$$${x},\:{y}\:{are}\:{roots}\:{of} \\ $$$${z}^{\mathrm{2}} −\mathrm{2}{kz}+\frac{\mathrm{4}{k}^{\mathrm{2}} −\mathrm{7}{k}}{\mathrm{3}}=\mathrm{0} \\ $$$$\Rightarrow{x},{y}={k}\pm\sqrt{\frac{{k}\left(\mathrm{7}−{k}\right)}{\mathrm{3}}}\:\:\:\:\left({k}\neq\mathrm{0}\right) \\ $$

Commented by mr W last updated on 25/Jun/20

((x+y)/(x^2 −xy+y^2 ))=(7/2)  has also infinite solutions.

$$\frac{{x}+{y}}{{x}^{\mathrm{2}} −{xy}+{y}^{\mathrm{2}} }=\frac{\mathrm{7}}{\mathrm{2}} \\ $$$${has}\:{also}\:{infinite}\:{solutions}. \\ $$

Commented by Ar Brandon last updated on 25/Jun/20

I tried applying the same reasoning which you used above, but I get complex solutions √-123k²

Commented by Ar Brandon last updated on 25/Jun/20

Oh my ! I'm so very sorry. You're right, it's a mistake. It's supposed to be 7/2 . Thanks for the remark

Commented by Ar Brandon last updated on 25/Jun/20

Or perhabs I didn't do it in the right way.

Commented by mr W last updated on 25/Jun/20

x+y=7k  x^2 −xy+y^2 =2k≠0  (x+y)^2 −3xy=2k  ⇒xy=((49k^2 −2k)/3)  z^2 −7kz+((49k^2 −2k)/3)=0  ⇒x, y=(1/2)[7k±(√((k(8−49k))/3))]

$${x}+{y}=\mathrm{7}{k} \\ $$$${x}^{\mathrm{2}} −{xy}+{y}^{\mathrm{2}} =\mathrm{2}{k}\neq\mathrm{0} \\ $$$$\left({x}+{y}\right)^{\mathrm{2}} −\mathrm{3}{xy}=\mathrm{2}{k} \\ $$$$\Rightarrow{xy}=\frac{\mathrm{49}{k}^{\mathrm{2}} −\mathrm{2}{k}}{\mathrm{3}} \\ $$$${z}^{\mathrm{2}} −\mathrm{7}{kz}+\frac{\mathrm{49}{k}^{\mathrm{2}} −\mathrm{2}{k}}{\mathrm{3}}=\mathrm{0} \\ $$$$\Rightarrow{x},\:{y}=\frac{\mathrm{1}}{\mathrm{2}}\left[\mathrm{7}{k}\pm\sqrt{\frac{{k}\left(\mathrm{8}−\mathrm{49}{k}\right)}{\mathrm{3}}}\right] \\ $$

Commented by Ar Brandon last updated on 26/Jun/20

Thanks a lot for your time��

Answered by 4635 last updated on 26/Jun/20

((x+y)/(x^2 −xy+y^2 ))=(7/2)⇒((x+y)/((x−y)^2 +xy))=(7/2)  ⇔((4(x+y))/(1+3(((x−y)/(x+y)))^(2 ) ))=(7/2)  {x+y=(7/4) et 3(((x−y)/(x+y)))^2 =1  {x+y=(7/4) et x−y=(7/(4(√3)))  x=(7/8)((((√3)+1)/(√3))) et  y=(7/8)((((√3)−1)/(√3)))

$$\frac{{x}+{y}}{{x}^{\mathrm{2}} −{xy}+{y}^{\mathrm{2}} }=\frac{\mathrm{7}}{\mathrm{2}}\Rightarrow\frac{{x}+{y}}{\left({x}−{y}\right)^{\mathrm{2}} +{xy}}=\frac{\mathrm{7}}{\mathrm{2}} \\ $$$$\Leftrightarrow\frac{\mathrm{4}\left({x}+{y}\right)}{\mathrm{1}+\mathrm{3}\left(\frac{{x}−{y}}{{x}+{y}}\right)^{\mathrm{2}\:} }=\frac{\mathrm{7}}{\mathrm{2}} \\ $$$$\left\{{x}+{y}=\frac{\mathrm{7}}{\mathrm{4}}\:{et}\:\mathrm{3}\left(\frac{{x}−{y}}{{x}+{y}}\right)^{\mathrm{2}} =\mathrm{1}\right. \\ $$$$\left\{{x}+{y}=\frac{\mathrm{7}}{\mathrm{4}}\:{et}\:{x}−{y}=\frac{\mathrm{7}}{\mathrm{4}\sqrt{\mathrm{3}}}\right. \\ $$$${x}=\frac{\mathrm{7}}{\mathrm{8}}\left(\frac{\sqrt{\mathrm{3}}+\mathrm{1}}{\sqrt{\mathrm{3}}}\right)\:{et}\:\:{y}=\frac{\mathrm{7}}{\mathrm{8}}\left(\frac{\sqrt{\mathrm{3}}−\mathrm{1}}{\sqrt{\mathrm{3}}}\right) \\ $$

Commented by mr W last updated on 26/Jun/20

forX,Y,a,b∈R  (X/Y)=(a/b) ⇏ X=a, Y=b

$${forX},{Y},{a},{b}\in{R} \\ $$$$\frac{{X}}{{Y}}=\frac{{a}}{{b}}\:\nRightarrow\:{X}={a},\:{Y}={b} \\ $$

Commented by Ar Brandon last updated on 26/Jun/20

Hum Takou, est-ce que tu as essayé de remplacer tes réponses dans l'équation pour voir si elles sont correctes ?��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com