Question and Answers Forum

All Questions      Topic List

Vector Calculus Questions

Previous in All Question      Next in All Question      

Previous in Vector Calculus      Next in Vector Calculus      

Question Number 100320 by bemath last updated on 26/Jun/20

Evaluate ∫∫_s  F^→ .n^�  dS where F^→ =4xi^�  −2y^2 j^�  +z^2 k^�    and S is the surface of the cylinder  bounded by x^2 +y^2 =4 ,z = 0 and z=3 .

$$\mathrm{Evaluate}\:\int\underset{\mathrm{s}} {\int}\:\overset{\rightarrow} {\mathrm{F}}.\hat {\mathrm{n}}\:\mathrm{dS}\:\mathrm{where}\:\overset{\rightarrow} {\mathrm{F}}=\mathrm{4x}\hat {\mathrm{i}}\:−\mathrm{2y}^{\mathrm{2}} \hat {\mathrm{j}}\:+\mathrm{z}^{\mathrm{2}} \hat {\mathrm{k}}\: \\ $$$$\mathrm{and}\:\mathrm{S}\:\mathrm{is}\:\mathrm{the}\:\mathrm{surface}\:\mathrm{of}\:\mathrm{the}\:\mathrm{cylinder} \\ $$$$\mathrm{bounded}\:\mathrm{by}\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\mathrm{4}\:,\mathrm{z}\:=\:\mathrm{0}\:\mathrm{and}\:\mathrm{z}=\mathrm{3}\:. \\ $$

Answered by smridha last updated on 26/Jun/20

∫∫_s F^→ .n^� ds=∫∫_R F^→ .n^� ((dxdz)/(∣n^� .j^� ∣)) [ take a projection on x−z plane]  our scaler point f^n  𝚽=x^2 +y^2 −4  so the unit normal of this surface  n^� =((▽𝚽)/(∣▽𝚽∣))=((xi^� +yj^� )/2) so ∣n^� .j^� ∣=(y/2)  and F^→ .n^� =((4x^2 −2y^3 )/2).  now our integral looks like  ∫_0 ^3 ∫_0 ^2 [((4x^2 )/y)−2y^2 ]dxdz  =∫_0 ^3 dz[∫_0 ^2 (((4x^2 )/(√(4−x^2 )))+(2x^2 −8))dx]  =3[−4.∫_0 ^2 {(√(4−x^2 ))  −(4/(√(4−x^2 )))}dx+((2/3)x^3 −8x)_0 ^2 ]  =3[−4(((x(√(4−x^2 )))/2)−2sin^(−1) ((x/2)))_0 ^2 +((16)/3)−16]  =3[4𝛑−((32)/3)]=[12𝛑−32]

$$\int\int_{\boldsymbol{{s}}} \overset{\rightarrow} {\boldsymbol{{F}}}.\hat {\boldsymbol{{n}ds}}=\int\int_{\boldsymbol{{R}}} \overset{\rightarrow} {\boldsymbol{{F}}}.\hat {\boldsymbol{{n}}}\frac{{dx}\boldsymbol{{dz}}}{\mid\hat {\boldsymbol{{n}}}.\hat {\boldsymbol{{j}}}\mid}\:\left[\:\boldsymbol{{take}}\:\boldsymbol{{a}}\:\boldsymbol{{projection}}\:\boldsymbol{{on}}\:\boldsymbol{{x}}−\boldsymbol{{z}}\:\boldsymbol{{plane}}\right] \\ $$$$\boldsymbol{{our}}\:\boldsymbol{{scaler}}\:\boldsymbol{{point}}\:\boldsymbol{{f}}^{\boldsymbol{{n}}} \:\boldsymbol{\Phi}=\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} −\mathrm{4} \\ $$$$\boldsymbol{{so}}\:\boldsymbol{{the}}\:\boldsymbol{{unit}}\:\boldsymbol{{normal}}\:\boldsymbol{{of}}\:\boldsymbol{{this}}\:\boldsymbol{{surface}} \\ $$$$\hat {\boldsymbol{{n}}}=\frac{\bigtriangledown\boldsymbol{\Phi}}{\mid\bigtriangledown\boldsymbol{\Phi}\mid}=\frac{\boldsymbol{{x}}\hat {\boldsymbol{{i}}}+\boldsymbol{{y}}\hat {\boldsymbol{{j}}}}{\mathrm{2}}\:\boldsymbol{{so}}\:\mid\hat {\boldsymbol{{n}}}.\hat {\boldsymbol{{j}}}\mid=\frac{\boldsymbol{{y}}}{\mathrm{2}} \\ $$$$\boldsymbol{{and}}\:\overset{\rightarrow} {\boldsymbol{{F}}}.\hat {\boldsymbol{{n}}}=\frac{\mathrm{4}\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{2}\boldsymbol{{y}}^{\mathrm{3}} }{\mathrm{2}}. \\ $$$$\boldsymbol{{now}}\:\boldsymbol{{our}}\:\boldsymbol{{integral}}\:\boldsymbol{{looks}}\:\boldsymbol{{like}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{3}} \int_{\mathrm{0}} ^{\mathrm{2}} \left[\frac{\mathrm{4}\boldsymbol{{x}}^{\mathrm{2}} }{\boldsymbol{{y}}}−\mathrm{2}\boldsymbol{{y}}^{\mathrm{2}} \right]\boldsymbol{{dxdz}} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{3}} \boldsymbol{{dz}}\left[\int_{\mathrm{0}} ^{\mathrm{2}} \left(\frac{\mathrm{4}\boldsymbol{{x}}^{\mathrm{2}} }{\sqrt{\mathrm{4}−\boldsymbol{{x}}^{\mathrm{2}} }}+\left(\mathrm{2}\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{8}\right)\right)\boldsymbol{{dx}}\right] \\ $$$$=\mathrm{3}\left[−\mathrm{4}.\int_{\mathrm{0}} ^{\mathrm{2}} \left\{\sqrt{\mathrm{4}−\boldsymbol{{x}}^{\mathrm{2}} }\:\:−\frac{\mathrm{4}}{\sqrt{\mathrm{4}−\boldsymbol{{x}}^{\mathrm{2}} }}\right\}\boldsymbol{{dx}}+\left(\frac{\mathrm{2}}{\mathrm{3}}\boldsymbol{{x}}^{\mathrm{3}} −\mathrm{8}\boldsymbol{{x}}\right)_{\mathrm{0}} ^{\mathrm{2}} \right] \\ $$$$=\mathrm{3}\left[−\mathrm{4}\left(\frac{\boldsymbol{{x}}\sqrt{\mathrm{4}−\boldsymbol{{x}}^{\mathrm{2}} }}{\mathrm{2}}−\mathrm{2sin}^{−\mathrm{1}} \left(\frac{\boldsymbol{{x}}}{\mathrm{2}}\right)\right)_{\mathrm{0}} ^{\mathrm{2}} +\frac{\mathrm{16}}{\mathrm{3}}−\mathrm{16}\right] \\ $$$$=\mathrm{3}\left[\mathrm{4}\boldsymbol{\pi}−\frac{\mathrm{32}}{\mathrm{3}}\right]=\left[\mathrm{12}\boldsymbol{\pi}−\mathrm{32}\right] \\ $$

Commented by bemath last updated on 26/Jun/20

great

$$\mathrm{great} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com