All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 100514 by mathmax by abdo last updated on 27/Jun/20
calculatelimn→+∞∫0∞(1−xn)nln(1+2x)dx
Answered by mathmax by abdo last updated on 27/Jun/20
An=∫0∞(1−xn)nln(2x+1)dx=∫R(1−xn)nln(2x+1)χ[0,+∞[(x)dx=∫Rfn(x)dxwithfn(x)=(1−xn)nln(2x+1)fn→csf(x)=e−xln(2x+1)and∣fn∣⩽f(x)integrableon[0,+∞[tbeoremofconvegencedomineegivelimn→+∞An=∫0∞e−xln(2x+1)dx=LbypartsL=[−e−xln(2x+1)]0+∞+∫0∞e−x22x+1dx=2∫0∞e−x2x+1dx=2x+1=t2∫1+∞e−(t−12)t×dt2=e∫1+∞e−t2tdt...becontinued...
Answered by maths mind last updated on 28/Jun/20
e−x⩾1−x⇔,x>0e−x−1x⩾−1...truebymeanvalutthf(t)=e−tover[0,x]x>0∃c∈[0,x]⇒e−x−1x=−e−c⩾−1⇒e−xn⩾1−xn⇒(1−xn)nln(1+2x)⩽e−xln(1+2x)∫0+∞e−xln(1+2x)dx<∞true⇒convergencetheorem⇒limn→∞∫0∞(1−xn)nln(1+2x)dx=∫0+∞limn→∞(1−xn)nln(1+2x)dx=∫0+∞e−xln(1+2x)dx[−e−xln(1+2x)]+∫0+∞e−x1+2xdx=∫0+∞e−x1+2xdx=∫1+∞e−(u−12)2udu=e2∫1+∞e−u22udu=e2∫12+∞e−t2t=e4∫12+∞e−ttdt=e4E(12)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com