Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 100514 by mathmax by abdo last updated on 27/Jun/20

calculatelim_(n→+∞)  ∫_0 ^∞  (1−(x/n))^n ln(1+2x)dx

calculatelimn+0(1xn)nln(1+2x)dx

Answered by mathmax by abdo last updated on 27/Jun/20

A_n =∫_0 ^∞  (1−(x/n))^n ln(2x+1)dx =∫_R (1−(x/n))^n ln(2x+1)χ_([0,+∞[) (x)dx  =∫_R f_n (x)dx with f_n (x) =(1−(x/n))^n  ln(2x+1)  f_n  →^(cs)   f(x) =e^(−x) ln(2x+1)  and ∣f_n ∣ ≤f(x) integrable on [0,+∞[   tbeorem of convegence dominee give lim_(n→+∞) A_n =∫_0 ^∞ e^(−x) ln(2x+1)dx =L  by parts  L =[−e^(−x) ln(2x+1)]_0 ^(+∞)  +∫_0 ^∞ e^(−x)  (2/(2x+1))dx  =2 ∫_0 ^∞  (e^(−x) /(2x+1))dx =_(2x+1=t)    2∫_1 ^(+∞)  (e^(−(((t−1)/2))) /t)×(dt/2) =(√e)∫_1 ^(+∞)  (e^(−(t/2)) /t)dt...be continued...

An=0(1xn)nln(2x+1)dx=R(1xn)nln(2x+1)χ[0,+[(x)dx=Rfn(x)dxwithfn(x)=(1xn)nln(2x+1)fncsf(x)=exln(2x+1)andfnf(x)integrableon[0,+[tbeoremofconvegencedomineegivelimn+An=0exln(2x+1)dx=LbypartsL=[exln(2x+1)]0++0ex22x+1dx=20ex2x+1dx=2x+1=t21+e(t12)t×dt2=e1+et2tdt...becontinued...

Answered by maths mind last updated on 28/Jun/20

e^(−x) ≥1−x⇔,x>0  ((e^(−x) −1)/x)≥−1...true by mean valut th  f(t)=e^(−t)  over [0,x]  x>0∃c∈[0,x]  ⇒((e^(−x) −1)/x)=−e^(−c) ≥−1  ⇒e^(−(x/n)) ≥1−(x/n)⇒(1−(x/n))^n ln(1+2x)≤e^(−x) ln(1+2x)  ∫_0 ^(+∞) e^(−x) ln(1+2x)dx<∞  true  ⇒ convergence theorem  ⇒lim_(n→∞) ∫_0 ^∞ (1−(x/n))^n ln(1+2x)dx=∫_0 ^(+∞) lim_(n→∞) (1−(x/n))^n ln(1+2x)dx  =∫_0 ^(+∞) e^(−x) ln(1+2x)dx  [−e^(−x) ln(1+2x)]+∫_0 ^(+∞) (e^(−x) /(1+2x))dx  =∫_0 ^(+∞) (e^(−x) /(1+2x))dx=∫_1 ^(+∞) (e^(−(((u−1)/2))) /(2u))du  =((√e)/2)∫_1 ^(+∞) (e^(−(u/2)) /(2u))du=((√e)/2)∫_(1/2) ^(+∞) (e^(−t) /(2t))  =((√e)/4)∫_(1/2) ^(+∞) (e^(−t) /t)dt=((√e)/4)E((1/2))

ex1x,x>0ex1x1...truebymeanvalutthf(t)=etover[0,x]x>0c[0,x]ex1x=ec1exn1xn(1xn)nln(1+2x)exln(1+2x)0+exln(1+2x)dx<trueconvergencetheoremlimn0(1xn)nln(1+2x)dx=0+limn(1xn)nln(1+2x)dx=0+exln(1+2x)dx[exln(1+2x)]+0+ex1+2xdx=0+ex1+2xdx=1+e(u12)2udu=e21+eu22udu=e212+et2t=e412+ettdt=e4E(12)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com