Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 100575 by bshahid010@gmail.com last updated on 27/Jun/20

Answered by Ar Brandon last updated on 27/Jun/20

Let I=lim_(x→∞) ∫_0 ^x e^x^2  dx=∫_0 ^∞ e^x^2  dx  ⇒I= { ((∫_0 ^∞ e^x^2  dx)),((∫_0 ^∞ e^y^2  dy)) :}  ⇒I^2 =∫_0 ^∞ ∫_0 ^∞ e^(x^2 +y^2 ) dxdy  ⇒I^2 =∫_0 ^(π/2) ∫_0 ^∞ re^r^2  drdθ=[(θ/2)]_0 ^(π/2) [(e^r^2  /1)]_0 ^∞ =lim_(r→∞) (π/4)(e^r^2  −1)  Let J=lim_(x→∞) ∫_0 ^x e^(2x^2 ) dx  ⇒J= { ((∫_0 ^∞ e^(2x^2 ) dx)),((∫_0 ^∞ e^(2y^2 ) dy)) :}  ⇒J^2 =∫_0 ^∞ ∫_0 ^∞ e^(2(x^2 +y^2 )) dxdy  ⇒J^2 =∫_0 ^(π/2) ∫_0 ^∞ re^(2r^2 ) drdθ=[(θ/4)]_0 ^(π/2) [(e^(2r^2 ) /1)]_0 ^∞ =lim_(r→∞) (π/8)(e^(2r^2 ) −1)  ⇒lim_(x→∞) (((∫_0 ^x e^x^2  dx)^2 )/(∫_0 ^x e^(2x^2 ) ))=lim_(r→∞) (((π/4)(e^r^2  −1))/(√((π/8)(e^(2r^2 ) −1))))=lim_(r→∞) ((π(1−(1/e^r^2  )))/(√(2π(1−(1/e^(2r^2 ) )))))                                      =(π/(√(2π)))=(√(π/2))

LetI=limx0xex2dx=0ex2dxI={0ex2dx0ey2dyI2=00ex2+y2dxdyI2=0π20rer2drdθ=[θ2]0π2[er21]0=limrπ4(er21)LetJ=limx0xe2x2dxJ={0e2x2dx0e2y2dyJ2=00e2(x2+y2)dxdyJ2=0π20re2r2drdθ=[θ4]0π2[e2r21]0=limrπ8(e2r21)limx(0xex2dx)20xe2x2=limrπ4(er21)π8(e2r21)=limrπ(11er2)2π(11e2r2)=π2π=π2

Commented by Coronavirus last updated on 27/Jun/20

    Clean

Clean

Commented by Ar Brandon last updated on 27/Jun/20

Ouais Corona, sdk ? C'est Einstein. Avec ton nom bizarre là.��

Commented by Coronavirus last updated on 27/Jun/20

ça va je profite du savoir de ce forum

Commented by Ar Brandon last updated on 27/Jun/20

Super ��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com