Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 100624 by Dwaipayan Shikari last updated on 27/Jun/20

Find the value of (√(2+(√(2+(√(2+(√2)))))))...∞ using cos function

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}}...\infty\:\mathrm{using}\:\mathrm{cos}\:\mathrm{function} \\ $$

Commented by MJS last updated on 27/Jun/20

why cos?  x=(√(2(√(2(√(2(√(2....))))))))  x^2 =2x  x_1 =0 wrong  x_2 =2 is the solution

$$\mathrm{why}\:\mathrm{cos}? \\ $$$${x}=\sqrt{\mathrm{2}\sqrt{\mathrm{2}\sqrt{\mathrm{2}\sqrt{\mathrm{2}....}}}} \\ $$$${x}^{\mathrm{2}} =\mathrm{2}{x} \\ $$$${x}_{\mathrm{1}} =\mathrm{0}\:\mathrm{wrong} \\ $$$${x}_{\mathrm{2}} =\mathrm{2}\:\mathrm{is}\:\mathrm{the}\:\mathrm{solution} \\ $$

Commented by Dwaipayan Shikari last updated on 27/Jun/20

There was a mistake on my question. Now can you prove it  sir using cos function????  I have edited my question

$${There}\:{was}\:{a}\:{mistake}\:{on}\:{my}\:{question}.\:{Now}\:{can}\:{you}\:{prove}\:{it} \\ $$$${sir}\:{using}\:\boldsymbol{{cos}}\:\boldsymbol{{function}}????\:\:\boldsymbol{{I}}\:\boldsymbol{{have}}\:\boldsymbol{{edited}}\:\boldsymbol{{my}}\:\boldsymbol{{question}} \\ $$

Commented by Dwaipayan Shikari last updated on 27/Jun/20

Sir i have found something  1+cos(π/4)=2cos^2 (π/8)  (√((1/2)(1+(1/(√2)))))=cos(π/8)  (1/2)(√(2+(√2)))=cos(π/8)=cos(π/2^3 )  1+cos(π/8)=2cos^2 (π/(16))  (1/2)(√(2+(√(2+(√2)))))=cos(π/(16))=cos(π/2^4 )  So  (1/2)(√(2+(√(2+(√(2+(√(2+(√(2+(√(2+(√(2...))))))))))))))n=cos(π/2^(n+1) )  lim_(n→∞)   (1/2)(√(2+(√(2+(√(2+(√(2+(√(2+(√2)))))))))))..n=cos(0)=1  so(√(2+(√(2+(√(2+(√(2+....∞))))))))=2  is it right???????

$${Sir}\:{i}\:{have}\:{found}\:{something} \\ $$$$\mathrm{1}+{cos}\frac{\pi}{\mathrm{4}}=\mathrm{2}{cos}^{\mathrm{2}} \frac{\pi}{\mathrm{8}} \\ $$$$\sqrt{\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\right)}={cos}\frac{\pi}{\mathrm{8}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}={cos}\frac{\pi}{\mathrm{8}}={cos}\frac{\pi}{\mathrm{2}^{\mathrm{3}} } \\ $$$$\mathrm{1}+{cos}\frac{\pi}{\mathrm{8}}=\mathrm{2}{cos}^{\mathrm{2}} \frac{\pi}{\mathrm{16}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}={cos}\frac{\pi}{\mathrm{16}}={cos}\frac{\pi}{\mathrm{2}^{\mathrm{4}} } \\ $$$${So}\:\:\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}...}}}}}}}{n}={cos}\frac{\pi}{\mathrm{2}^{{n}+\mathrm{1}} } \\ $$$$\mathrm{li}\underset{{n}\rightarrow\infty} {\mathrm{m}}\:\:\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}}}}..{n}={cos}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$${so}\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+....\infty}}}}=\mathrm{2} \\ $$$$\boldsymbol{{is}}\:\boldsymbol{{it}}\:\boldsymbol{{right}}??????? \\ $$

Answered by maths mind last updated on 27/Jun/20

u_(n+1) ^2 =u_n +2...E  u_0 =(√2)  we can proof this  withe  logic  0≤u_n ≤2...easy too see  u_(n+1) −u_n =((u_n +2−u_n ^2 )/((√(u_n +2))+u_n ))=((−(u_n −2)(u_n +1))/((√(u_n +2))+u_n ))≥0  u_n ↾ increasing   ⇒  since0 ≤U_n ≤2  ⇒∃ (w_n ) such u_n =2cos(w_n ) proof  w_n =cos^(−1) ((u_n /2)) well defind since (u_n /2)∈[0,1]  since u_n ∈[0,2] and incrasing ⇒w_n ∈[0,(π/2)]⇒  w_n  is deacrising  E⇔4cos^2 (w_(n+1) )=2+2cos(w_n )⇒2cos^2 (w_(n+1) )−1=cos(w_n )  cos(2x)=2cos^2 (x)−1⇒  E⇔cos(2w_(n+1) )=cos(w_n )  ⇒2w_(n+1) =w_n  because w_n ∈[0,(π/2)]  ⇒w_(n+1) =(w_n /2)⇒w_n is geometric sequences  ⇒w_n =w_0 ((1/2))^n   w_0 =(π/4)  u_n =2cos((π/(4.2^n )))=2cos((π/2^(n+2) ))

$${u}_{{n}+\mathrm{1}} ^{\mathrm{2}} ={u}_{{n}} +\mathrm{2}...{E} \\ $$$${u}_{\mathrm{0}} =\sqrt{\mathrm{2}} \\ $$$${we}\:{can}\:{proof}\:{this}\:\:{withe}\:\:{logic} \\ $$$$\mathrm{0}\leqslant{u}_{{n}} \leqslant\mathrm{2}...{easy}\:{too}\:{see} \\ $$$${u}_{{n}+\mathrm{1}} −{u}_{{n}} =\frac{{u}_{{n}} +\mathrm{2}−{u}_{{n}} ^{\mathrm{2}} }{\sqrt{{u}_{{n}} +\mathrm{2}}+{u}_{{n}} }=\frac{−\left({u}_{{n}} −\mathrm{2}\right)\left({u}_{{n}} +\mathrm{1}\right)}{\sqrt{{u}_{{n}} +\mathrm{2}}+{u}_{{n}} }\geqslant\mathrm{0} \\ $$$${u}_{{n}} \upharpoonright\:{increasing}\: \\ $$$$\Rightarrow\:\:{since}\mathrm{0}\:\leqslant{U}_{{n}} \leqslant\mathrm{2} \\ $$$$\Rightarrow\exists\:\left({w}_{{n}} \right)\:{such}\:{u}_{{n}} =\mathrm{2}{cos}\left({w}_{{n}} \right)\:{proof} \\ $$$${w}_{{n}} =\mathrm{cos}^{−\mathrm{1}} \left(\frac{{u}_{{n}} }{\mathrm{2}}\right)\:{well}\:{defind}\:{since}\:\frac{{u}_{{n}} }{\mathrm{2}}\in\left[\mathrm{0},\mathrm{1}\right] \\ $$$${since}\:{u}_{{n}} \in\left[\mathrm{0},\mathrm{2}\right]\:{and}\:{incrasing}\:\Rightarrow{w}_{{n}} \in\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\right]\Rightarrow \\ $$$${w}_{{n}} \:{is}\:{deacrising} \\ $$$${E}\Leftrightarrow\mathrm{4}{cos}^{\mathrm{2}} \left({w}_{{n}+\mathrm{1}} \right)=\mathrm{2}+\mathrm{2}{cos}\left({w}_{{n}} \right)\Rightarrow\mathrm{2}{cos}^{\mathrm{2}} \left({w}_{{n}+\mathrm{1}} \right)−\mathrm{1}={cos}\left({w}_{{n}} \right) \\ $$$${cos}\left(\mathrm{2}{x}\right)=\mathrm{2}{cos}^{\mathrm{2}} \left({x}\right)−\mathrm{1}\Rightarrow \\ $$$${E}\Leftrightarrow{cos}\left(\mathrm{2}{w}_{{n}+\mathrm{1}} \right)={cos}\left({w}_{{n}} \right) \\ $$$$\Rightarrow\mathrm{2}{w}_{{n}+\mathrm{1}} ={w}_{{n}} \:{because}\:{w}_{{n}} \in\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\right] \\ $$$$\Rightarrow{w}_{{n}+\mathrm{1}} =\frac{{w}_{{n}} }{\mathrm{2}}\Rightarrow{w}_{{n}} {is}\:{geometric}\:{sequences} \\ $$$$\Rightarrow{w}_{{n}} ={w}_{\mathrm{0}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} \:\:{w}_{\mathrm{0}} =\frac{\pi}{\mathrm{4}} \\ $$$${u}_{{n}} =\mathrm{2}{cos}\left(\frac{\pi}{\mathrm{4}.\mathrm{2}^{{n}} }\right)=\mathrm{2}{cos}\left(\frac{\pi}{\mathrm{2}^{{n}+\mathrm{2}} }\right) \\ $$$$ \\ $$

Commented by ghiniboss last updated on 28/Jun/20

what aspect of maths is this?

$$\mathrm{what}\:\mathrm{aspect}\:\mathrm{of}\:\mathrm{maths}\:\mathrm{is}\:\mathrm{this}? \\ $$

Commented by prakash jain last updated on 28/Jun/20

Two topics  Sequences and series  recurrence relation

$$\mathrm{Two}\:\mathrm{topics} \\ $$$$\mathrm{Sequences}\:\mathrm{and}\:\mathrm{series} \\ $$$$\mathrm{recurrence}\:\mathrm{relation} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com