Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 100817 by ajfour last updated on 28/Jun/20

Commented by ajfour last updated on 28/Jun/20

Find side s of square given a,b,r.

$${Find}\:{side}\:{s}\:{of}\:{square}\:{given}\:{a},{b},{r}. \\ $$

Answered by mr W last updated on 28/Jun/20

right vertex (k,h)  eqn. tangent line to ellipse:  x−y−k+h=0  eqn. tangent line to circle:  x+y−k−h=0  eqn. of circle:  x^2 +(y−b−r)^2 =r^2     (−k+h)^2 =a^2 +b^2  ⇒k−h=(√(a^2 +b^2 ))  (b+r−k−h)^2 =2r^2 ⇒k+h=b+((√2)+1)r  ⇒k=(((√(a^2 +b^2 ))+b+((√2)+1)r)/2)  ⇒h=((b+((√2)+1)r−(√(a^2 +b^2 )))/2)  ⇒s=(√2)k=(((√(a^2 +b^2 ))+b+((√2)+1)r)/(√2))

$${right}\:{vertex}\:\left({k},{h}\right) \\ $$$${eqn}.\:{tangent}\:{line}\:{to}\:{ellipse}: \\ $$$${x}−{y}−{k}+{h}=\mathrm{0} \\ $$$${eqn}.\:{tangent}\:{line}\:{to}\:{circle}: \\ $$$${x}+{y}−{k}−{h}=\mathrm{0} \\ $$$${eqn}.\:{of}\:{circle}: \\ $$$${x}^{\mathrm{2}} +\left({y}−{b}−{r}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$ \\ $$$$\left(−{k}+{h}\right)^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} \:\Rightarrow{k}−{h}=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$$\left({b}+{r}−{k}−{h}\right)^{\mathrm{2}} =\mathrm{2}{r}^{\mathrm{2}} \Rightarrow{k}+{h}={b}+\left(\sqrt{\mathrm{2}}+\mathrm{1}\right){r} \\ $$$$\Rightarrow{k}=\frac{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }+{b}+\left(\sqrt{\mathrm{2}}+\mathrm{1}\right){r}}{\mathrm{2}} \\ $$$$\Rightarrow{h}=\frac{{b}+\left(\sqrt{\mathrm{2}}+\mathrm{1}\right){r}−\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}{\mathrm{2}} \\ $$$$\Rightarrow{s}=\sqrt{\mathrm{2}}{k}=\frac{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }+{b}+\left(\sqrt{\mathrm{2}}+\mathrm{1}\right){r}}{\sqrt{\mathrm{2}}} \\ $$

Commented by mr W last updated on 28/Jun/20

Commented by ajfour last updated on 28/Jun/20

(−k+h)^2 =a^2 +b^2  ⇒k−h=(√(a^2 +b^2 ))  some explanation for this line  Sir ....

$$\left(−{k}+{h}\right)^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} \:\Rightarrow{k}−{h}=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$${some}\:{explanation}\:{for}\:{this}\:{line} \\ $$$${Sir}\:.... \\ $$

Commented by mr W last updated on 28/Jun/20

if y=mx+c tangents the ellipse, then  a^2 m^2 +b^2 =c^2 .  i think once you have proved this.

$${if}\:{y}={mx}+{c}\:{tangents}\:{the}\:{ellipse},\:{then} \\ $$$${a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} ={c}^{\mathrm{2}} . \\ $$$${i}\:{think}\:{once}\:{you}\:{have}\:{proved}\:{this}. \\ $$

Commented by ajfour last updated on 29/Jun/20

Understood Sir, nice and cool!

$${Understood}\:{Sir},\:{nice}\:{and}\:{cool}! \\ $$

Answered by ajfour last updated on 29/Jun/20

{(b+r+r(√2))−s(√2) }^2 =a^2 +b^2   ⇒  s=(((√(a^2 +b^2 ))+b+r(1+(√2)))/(√2)) .

$$\left\{\left({b}+{r}+{r}\sqrt{\mathrm{2}}\right)−{s}\sqrt{\mathrm{2}}\:\right\}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:{s}=\frac{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }+{b}+{r}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)}{\sqrt{\mathrm{2}}}\:. \\ $$

Commented by ajfour last updated on 29/Jun/20

your idea implemented straightway,  Sir.

$${your}\:{idea}\:{implemented}\:{straightway}, \\ $$$${Sir}. \\ $$

Commented by mr W last updated on 29/Jun/20

������

Terms of Service

Privacy Policy

Contact: info@tinkutara.com