Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 100920 by ajfour last updated on 29/Jun/20

Find limit      lim_(x→+∞) x((√(x^2 +1))−x)   and     lim_(x→−∞) x((√(x^2 +1))−x)  .

$${Find}\:{limit} \\ $$$$\:\:\:\:\underset{{x}\rightarrow+\infty} {\mathrm{lim}}{x}\left(\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}−{x}\right)\:\:\:{and} \\ $$$$\:\:\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}{x}\left(\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}−{x}\right)\:\:. \\ $$

Commented by bramlex last updated on 29/Jun/20

lim_(x→+∞)  x(x(√(1+(1/x^2 )))−x)   set (1/x) = z ,z→0  lim_(z→0)  (1/z)((1/z)(√(1+z^2 ))−(1/z)) =  lim_(z→0)  (((√(1+z^2 )) −1)/z^2 ) = lim_(z→0)  (((1+(z^2 /2))−1)/z^2 )  = (1/2) ★

$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\:{x}\left({x}\sqrt{\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}−{x}\right)\: \\ $$$${set}\:\frac{\mathrm{1}}{{x}}\:=\:{z}\:,{z}\rightarrow\mathrm{0} \\ $$$$\underset{{z}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{{z}}\left(\frac{\mathrm{1}}{{z}}\sqrt{\mathrm{1}+{z}^{\mathrm{2}} }−\frac{\mathrm{1}}{{z}}\right)\:= \\ $$$$\underset{{z}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{1}+{z}^{\mathrm{2}} }\:−\mathrm{1}}{{z}^{\mathrm{2}} }\:=\:\underset{{z}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}+\frac{{z}^{\mathrm{2}} }{\mathrm{2}}\right)−\mathrm{1}}{{z}^{\mathrm{2}} } \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}}\:\bigstar \\ $$

Commented by bramlex last updated on 29/Jun/20

lim_(x→−∞)  x((√(x^2 +1))−x)=  lim_(x→−∞) x(−x(√(1+(1/x^2 )))−x)=  lim_(x→−∞) x(−x(√(1+((1/(−x)))^2 ))−x)=  lim_(x→−∞) −x^2 ((√(1+(−(1/x))^2 ))+1)  set (1/(−x)) = q , q→0  lim_(q→0)  −((1/q))^2 ((√(1+q^2 ))+1)=  −lim_(q→0)  (((√(1+q^2 ))+1)/q^2 ) = −∞ .★

$$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:{x}\left(\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}−{x}\right)= \\ $$$$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}{x}\left(−{x}\sqrt{\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}−{x}\right)= \\ $$$$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}{x}\left(−{x}\sqrt{\mathrm{1}+\left(\frac{\mathrm{1}}{−{x}}\right)^{\mathrm{2}} }−{x}\right)= \\ $$$$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}−{x}^{\mathrm{2}} \left(\sqrt{\mathrm{1}+\left(−\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} }+\mathrm{1}\right) \\ $$$${set}\:\frac{\mathrm{1}}{−{x}}\:=\:{q}\:,\:{q}\rightarrow\mathrm{0} \\ $$$$\underset{{q}\rightarrow\mathrm{0}} {\mathrm{lim}}\:−\left(\frac{\mathrm{1}}{{q}}\right)^{\mathrm{2}} \left(\sqrt{\mathrm{1}+{q}^{\mathrm{2}} }+\mathrm{1}\right)= \\ $$$$−\underset{{q}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{1}+{q}^{\mathrm{2}} }+\mathrm{1}}{{q}^{\mathrm{2}} }\:=\:−\infty\:.\bigstar \\ $$

Answered by mathmax by abdo last updated on 29/Jun/20

for x>0 we have x((√(x^2 +1))−x) =x(x(√(1+(1/x^2 )))−x)∼x(x(1+(1/(2x^2 )))−x)  =x( (1/(2x))) =(1/2) ⇒lim_(x→+∞)  x((√(1+x^2 ))−x) =(1/2)  for x<0  we have x((√(x^2 +1))−x) =x{ −x(√(1+(1/x^2 )))−x}  ∼x{−x(1+(1/(2x^2 )))−x} =x{−2x−(1/(2x))} =−2x^2 −(x/2) →−∞

$$\mathrm{for}\:\mathrm{x}>\mathrm{0}\:\mathrm{we}\:\mathrm{have}\:\mathrm{x}\left(\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}−\mathrm{x}\right)\:=\mathrm{x}\left(\mathrm{x}\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }}−\mathrm{x}\right)\sim\mathrm{x}\left(\mathrm{x}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2x}^{\mathrm{2}} }\right)−\mathrm{x}\right) \\ $$$$=\mathrm{x}\left(\:\frac{\mathrm{1}}{\mathrm{2x}}\right)\:=\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow\mathrm{lim}_{\mathrm{x}\rightarrow+\infty} \:\mathrm{x}\left(\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }−\mathrm{x}\right)\:=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{for}\:\mathrm{x}<\mathrm{0}\:\:\mathrm{we}\:\mathrm{have}\:\mathrm{x}\left(\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}−\mathrm{x}\right)\:=\mathrm{x}\left\{\:−\mathrm{x}\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }}−\mathrm{x}\right\} \\ $$$$\sim\mathrm{x}\left\{−\mathrm{x}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2x}^{\mathrm{2}} }\right)−\mathrm{x}\right\}\:=\mathrm{x}\left\{−\mathrm{2x}−\frac{\mathrm{1}}{\mathrm{2x}}\right\}\:=−\mathrm{2x}^{\mathrm{2}} −\frac{\mathrm{x}}{\mathrm{2}}\:\rightarrow−\infty \\ $$

Commented by ajfour last updated on 29/Jun/20

correct Sir,  i mean lim_(x→+∞) f(x)=(1/2)  and  lim_(x→−∞) f(x)=−∞ . Thanks.

$${correct}\:{Sir},\:\:{i}\:{mean}\:\underset{{x}\rightarrow+\infty} {\mathrm{lim}}{f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${and}\:\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}{f}\left({x}\right)=−\infty\:.\:{Thanks}. \\ $$

Commented by mathmax by abdo last updated on 29/Jun/20

you are welcome

$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com