Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 100951 by bemath last updated on 29/Jun/20

Commented by Rasheed.Sindhi last updated on 29/Jun/20

By john santu(answer of  q#97746) Same as above.  2^x (1+2^(x+1) ) = (y−1)(y+1)  show that the factors y−1 and y+1  are even, exactly one of them   divisible by 4. Hence x≥3 and one  of these factors is divisible by 2^(x−1)   but not by 2^x . so y = 2^(x−1) m+ε , m odd , ε = ±1  plugging this into the original   equation we obtain 2^x (1+2^(x+1) )=(2^(x−1) m+ε)^2 −1  = 2^(2x−2) m^2 +2^x mε  or equivalently 1+2^(x+1) =2^(x−2) m^2 +mε  ⇔ thus we have the complete  list solutions (x,y) : (0,2),(0,−2),  (4,23),(4,−23).

$${By}\:{john}\:{santu}\left({answer}\:{of}\right. \\ $$$$\left.{q}#\mathrm{97746}\right)\:{Same}\:{as}\:{above}. \\ $$$$\mathrm{2}^{{x}} \left(\mathrm{1}+\mathrm{2}^{{x}+\mathrm{1}} \right)\:=\:\left({y}−\mathrm{1}\right)\left({y}+\mathrm{1}\right) \\ $$$${show}\:{that}\:{the}\:{factors}\:{y}−\mathrm{1}\:{and}\:{y}+\mathrm{1} \\ $$$${are}\:{even},\:\mathrm{exactly}\:\mathrm{one}\:\mathrm{of}\:\mathrm{them}\: \\ $$$$\mathrm{divisible}\:\mathrm{by}\:\mathrm{4}.\:\mathrm{Hence}\:\mathrm{x}\geqslant\mathrm{3}\:\mathrm{and}\:\mathrm{one} \\ $$$$\mathrm{of}\:\mathrm{these}\:\mathrm{factors}\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{2}^{\mathrm{x}−\mathrm{1}} \\ $$$$\mathrm{but}\:\mathrm{not}\:\mathrm{by}\:\mathrm{2}^{\mathrm{x}} .\:\mathrm{so}\:\mathrm{y}\:=\:\mathrm{2}^{\mathrm{x}−\mathrm{1}} \mathrm{m}+\epsilon\:,\:\mathrm{m}\:\mathrm{odd}\:,\:\epsilon\:=\:\pm\mathrm{1} \\ $$$$\mathrm{plugging}\:\mathrm{this}\:\mathrm{into}\:\mathrm{the}\:\mathrm{original}\: \\ $$$$\mathrm{equation}\:\mathrm{we}\:\mathrm{obtain}\:\mathrm{2}^{\mathrm{x}} \left(\mathrm{1}+\mathrm{2}^{\mathrm{x}+\mathrm{1}} \right)=\left(\mathrm{2}^{\mathrm{x}−\mathrm{1}} \mathrm{m}+\epsilon\right)^{\mathrm{2}} −\mathrm{1} \\ $$$$=\:\mathrm{2}^{\mathrm{2x}−\mathrm{2}} \mathrm{m}^{\mathrm{2}} +\mathrm{2}^{\mathrm{x}} \mathrm{m}\epsilon \\ $$$$\mathrm{or}\:\mathrm{equivalently}\:\mathrm{1}+\mathrm{2}^{\mathrm{x}+\mathrm{1}} =\mathrm{2}^{\mathrm{x}−\mathrm{2}} \mathrm{m}^{\mathrm{2}} +\mathrm{m}\epsilon \\ $$$$\Leftrightarrow\:\mathrm{thus}\:\mathrm{we}\:\mathrm{have}\:\mathrm{the}\:\mathrm{complete} \\ $$$$\mathrm{list}\:\mathrm{solutions}\:\left(\mathrm{x},\mathrm{y}\right)\::\:\left(\mathrm{0},\mathrm{2}\right),\left(\mathrm{0},−\mathrm{2}\right), \\ $$$$\left(\mathrm{4},\mathrm{23}\right),\left(\mathrm{4},−\mathrm{23}\right).\: \\ $$

Commented by Rasheed.Sindhi last updated on 30/Jun/20

Sir bemath,  Your solution (which you have  given as a question) is solution  of your q#97746 which was  answered there by  sirjohn santu  and your this solution is same  as his. Why you′ve repeated it  and gave answer without question!!!  (Only to satisfy my curosity) :)

$${Sir}\:{bemath}, \\ $$$${Your}\:{solution}\:\left({which}\:{you}\:{have}\right. \\ $$$$\left.{given}\:{as}\:{a}\:{question}\right)\:{is}\:{solution} \\ $$$${of}\:{your}\:{q}#\mathrm{97746}\:{which}\:{was} \\ $$$${answered}\:{there}\:{by}\:\:{sirjohn}\:{santu} \\ $$$${and}\:{your}\:{this}\:{solution}\:{is}\:{same} \\ $$$${as}\:{his}.\:{Why}\:{you}'{ve}\:{repeated}\:{it} \\ $$$${and}\:{gave}\:{answer}\:{without}\:{question}!!! \\ $$$$\left.\left({Only}\:{to}\:{satisfy}\:{my}\:{curosity}\right)\::\right) \\ $$

Commented by 1549442205 last updated on 01/Jul/20

I guess perhaps he want everyone know above  his question with a  good solution for it

$$\mathrm{I}\:\mathrm{guess}\:\mathrm{perhaps}\:\mathrm{he}\:\mathrm{want}\:\mathrm{everyone}\:\mathrm{know}\:\mathrm{above} \\ $$$$\mathrm{his}\:\mathrm{question}\:\mathrm{with}\:\mathrm{a}\:\:\mathrm{good}\:\mathrm{solution}\:\mathrm{for}\:\mathrm{it} \\ $$

Commented by Rasheed.Sindhi last updated on 01/Jul/20

May be.

$$\mathcal{M}{ay}\:{be}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com