Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 101073 by Dwaipayan Shikari last updated on 30/Jun/20

∫_0 ^∞ ((sin(logx))/(logx))dx

$$\int_{\mathrm{0}} ^{\infty} \frac{{sin}\left({logx}\right)}{{logx}}{dx} \\ $$

Answered by mathmax by abdo last updated on 30/Jun/20

A =∫_0 ^∞  ((sin(lnx))/(lnx))dx   changement lnx =−t give  x =e^(−t)   A =∫_(+∞) ^(−∞)  ((sin(−t))/(−t)) (−e^(−t) )dt =∫_(−∞) ^(+∞)  ((sint)/t) e^(−t)  dt  =∫_(−∞) ^0  ((sint)/t) e^(−t)  dt(→t =−u) +∫_0 ^∞  ((sint)/t) e^(−t)  dt  =∫_(+∞) ^0  ((−sinu)/(−u)) e^u  (−du) +∫_0 ^∞  ((sint)/t) e^(−t)  dt =∫_0 ^(+∞ ) ((sint)/t) e^t  dt +∫_0 ^∞  ((sint)/t) e^(−t) [dt  =∫_0 ^∞ ((sint)/t)(e^t  +e^(−t) )dt   =∫_0 ^∞  ((sint )/t) e^t  dt (diverrgent) +∫_0 ^∞  ((sint)/t) e^(−t)  dt (convervent)  ⇒∫_0 ^∞  ((sin(lnx))/(lnx))dx is divergent

$$\mathrm{A}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{sin}\left(\mathrm{lnx}\right)}{\mathrm{lnx}}\mathrm{dx}\:\:\:\mathrm{changement}\:\mathrm{lnx}\:=−\mathrm{t}\:\mathrm{give}\:\:\mathrm{x}\:=\mathrm{e}^{−\mathrm{t}} \\ $$$$\mathrm{A}\:=\int_{+\infty} ^{−\infty} \:\frac{\mathrm{sin}\left(−\mathrm{t}\right)}{−\mathrm{t}}\:\left(−\mathrm{e}^{−\mathrm{t}} \right)\mathrm{dt}\:=\int_{−\infty} ^{+\infty} \:\frac{\mathrm{sint}}{\mathrm{t}}\:\mathrm{e}^{−\mathrm{t}} \:\mathrm{dt} \\ $$$$=\int_{−\infty} ^{\mathrm{0}} \:\frac{\mathrm{sint}}{\mathrm{t}}\:\mathrm{e}^{−\mathrm{t}} \:\mathrm{dt}\left(\rightarrow\mathrm{t}\:=−\mathrm{u}\right)\:+\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{sint}}{\mathrm{t}}\:\mathrm{e}^{−\mathrm{t}} \:\mathrm{dt} \\ $$$$=\int_{+\infty} ^{\mathrm{0}} \:\frac{−\mathrm{sinu}}{−\mathrm{u}}\:\mathrm{e}^{\mathrm{u}} \:\left(−\mathrm{du}\right)\:+\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{sint}}{\mathrm{t}}\:\mathrm{e}^{−\mathrm{t}} \:\mathrm{dt}\:=\int_{\mathrm{0}} ^{+\infty\:} \frac{\mathrm{sint}}{\mathrm{t}}\:\mathrm{e}^{\mathrm{t}} \:\mathrm{dt}\:+\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{sint}}{\mathrm{t}}\:\mathrm{e}^{−\mathrm{t}} \left[\mathrm{dt}\right. \\ $$$$=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sint}}{\mathrm{t}}\left(\mathrm{e}^{\mathrm{t}} \:+\mathrm{e}^{−\mathrm{t}} \right)\mathrm{dt}\:\:\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{sint}\:}{\mathrm{t}}\:\mathrm{e}^{\mathrm{t}} \:\mathrm{dt}\:\left(\mathrm{diverrgent}\right)\:+\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{sint}}{\mathrm{t}}\:\mathrm{e}^{−\mathrm{t}} \:\mathrm{dt}\:\left(\mathrm{convervent}\right) \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{sin}\left(\mathrm{lnx}\right)}{\mathrm{lnx}}\mathrm{dx}\:\mathrm{is}\:\mathrm{divergent} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com