Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 101231 by 175 last updated on 01/Jul/20

Commented by Dwaipayan Shikari last updated on 01/Jul/20

(1/n).(π/6)lim_(n→∞) ((2^(1/n) −1)/(1/n)) Σ_(r=0) ^n (2^(r/n) cos(2^(r/n) (π/6)))  (π/6) log2 ∫_0 ^1 2^x cos(2^x (π/6))dx  ∫_0 ^1 cos(2^x (π/6))2^x (π/6)log2dx   ∫_(π/6) ^(π/3) cost dt =[sint]_(π/6) ^(π/3) =(((√3)−1)/2)  {suppose 2^x (π/6)=t}

1n.π6limn21n11nnr=0(2rncos(2rnπ6))π6log2012xcos(2xπ6)dx01cos(2xπ6)2xπ6log2dxπ6π3costdt=[sint]π6π3=312{suppose2xπ6=t}

Answered by smridha last updated on 01/Jul/20

(𝛑/6)lim_(n→∞) ((2^(1/n) −1)/(1/n)).[lim_(n→∞) (1/n).Σ_(r=0) ^n 2^(r/n) .cos(2^(r/n) .(𝛑/6))]  =(𝛑/6).ln(2).∫_(0 ) ^1 2^x .cos(2^x .(𝛑/6))dx  =(𝛑/6).ln2.(6/(𝛑.ln(2)))∫_0 ^1 d[sin(2^x .(𝛑/6))]  =1.[sin(2^x .(𝛑/6))]_0 ^1 =[sin(𝛑/3)−sin(𝛑/6)]      =((√3)/2)−(1/2)=(((√3)−1)/2).

π6limn21n11n.[limn1n.nr=02rn.cos(2rn.π6)]=π6.ln(2).012x.cos(2x.π6)dx=π6.ln2.6π.ln(2)01d[sin(2x.π6)]=1.[sin(2x.π6)]01=[sinπ3sinπ6]=3212=312.

Commented by 175 last updated on 01/Jul/20

thanx

Commented by smridha last updated on 01/Jul/20

welcome...but careful there is a group ��������

Terms of Service

Privacy Policy

Contact: info@tinkutara.com