Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 101330 by 175 last updated on 01/Jul/20

Evaluate.  ∫_(−π) ^π x^9 cos x dx

$${Evaluate}. \\ $$$$\int_{−\pi} ^{\pi} {x}^{\mathrm{9}} \mathrm{cos}\:{x}\:{dx} \\ $$

Commented by mr W last updated on 01/Jul/20

this is an odd function, since  f(−x)=−f(x)    for odd function:  ∫_(−a) ^a f(x)dx=0  ⇒∫_(−π) ^π x^9 cos x dx=0

$${this}\:{is}\:{an}\:{odd}\:{function},\:{since} \\ $$$${f}\left(−{x}\right)=−{f}\left({x}\right) \\ $$$$ \\ $$$${for}\:{odd}\:{function}: \\ $$$$\int_{−{a}} ^{{a}} {f}\left({x}\right){dx}=\mathrm{0} \\ $$$$\Rightarrow\int_{−\pi} ^{\pi} {x}^{\mathrm{9}} \mathrm{cos}\:{x}\:{dx}=\mathrm{0} \\ $$

Commented by ajfour last updated on 02/Jul/20

well what if  I= ∫_0 ^(  π) x^9 cos x ?

$${well}\:{what}\:{if}\:\:{I}=\:\int_{\mathrm{0}} ^{\:\:\pi} {x}^{\mathrm{9}} \mathrm{cos}\:{x}\:? \\ $$

Commented by mr W last updated on 02/Jul/20

I_(2n+1) =−(2n+1)[π^(2n) +(2n)I_(2n−1) ]  ....

$${I}_{\mathrm{2}{n}+\mathrm{1}} =−\left(\mathrm{2}{n}+\mathrm{1}\right)\left[\pi^{\mathrm{2}{n}} +\left(\mathrm{2}{n}\right){I}_{\mathrm{2}{n}−\mathrm{1}} \right] \\ $$$$.... \\ $$

Commented by ajfour last updated on 02/Jul/20

thanks Sir!

$${thanks}\:{Sir}! \\ $$

Commented by 1549442205 last updated on 02/Jul/20

F_n =∫x^n dsinx=x^n sinx−∫nx^(n−1) sinxdx  =x^n sinx+n∫x^(n−1) dcosx=x^n sinx+nx^(n−1) cosx  −n(n−1)∫x^(n−2) cosx=x^n sinx+nx^(n−1) cosx−n(n−1)F_(n−2)   Hence,I_n =∫_0 ^π x^n cosxdx=x^n sinx∣^π _0 +nx^(n−1) cosx∣_0 ^π −nI_(n−1)   I_n =−n𝛑^(n−1) −n(n−1)I_(n−2)

$$\mathrm{F}_{\mathrm{n}} =\int\mathrm{x}^{\mathrm{n}} \mathrm{dsinx}=\mathrm{x}^{\mathrm{n}} \mathrm{sinx}−\int\mathrm{nx}^{\mathrm{n}−\mathrm{1}} \mathrm{sinxdx} \\ $$$$=\mathrm{x}^{\mathrm{n}} \mathrm{sinx}+\mathrm{n}\int\mathrm{x}^{\mathrm{n}−\mathrm{1}} \mathrm{dcosx}=\mathrm{x}^{\mathrm{n}} \mathrm{sinx}+\mathrm{nx}^{\mathrm{n}−\mathrm{1}} \mathrm{cosx} \\ $$$$−\mathrm{n}\left(\mathrm{n}−\mathrm{1}\right)\int\mathrm{x}^{\mathrm{n}−\mathrm{2}} \mathrm{cosx}=\mathrm{x}^{\mathrm{n}} \mathrm{sinx}+\mathrm{nx}^{\mathrm{n}−\mathrm{1}} \mathrm{cosx}−\mathrm{n}\left(\mathrm{n}−\mathrm{1}\right)\mathrm{F}_{\mathrm{n}−\mathrm{2}} \\ $$$$\mathrm{Hence},\mathrm{I}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\pi} \mathrm{x}^{\mathrm{n}} \mathrm{cosxdx}=\mathrm{x}^{\mathrm{n}} \mathrm{sinx}\underset{\mathrm{0}} {\mid}^{\pi} +\mathrm{nx}^{\mathrm{n}−\mathrm{1}} \mathrm{cosx}\mid_{\mathrm{0}} ^{\pi} −\mathrm{nI}_{\mathrm{n}−\mathrm{1}} \\ $$$$\boldsymbol{\mathrm{I}}_{\boldsymbol{\mathrm{n}}} =−\boldsymbol{\mathrm{n}\pi}^{\boldsymbol{\mathrm{n}}−\mathrm{1}} −\boldsymbol{\mathrm{n}}\left(\boldsymbol{\mathrm{n}}−\mathrm{1}\right)\boldsymbol{\mathrm{I}}_{\boldsymbol{\mathrm{n}}−\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com