Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 101375 by ajfour last updated on 02/Jul/20

Commented by ajfour last updated on 02/Jul/20

In terms of R, find radii a,b,c.

$${In}\:{terms}\:{of}\:{R},\:{find}\:{radii}\:{a},{b},{c}. \\ $$

Commented by ajfour last updated on 05/Jul/20

Commented by ajfour last updated on 06/Jul/20

lets consider both circles of radii  a and c generally.  Both are at a distance of (R+r) from  center M of circle of radius R.  Both touch the line y=R^2 +(1/4)+R  both touch the parabola at (x,x^2 )  x_1 =(√(R^2 −(1/4)))  center of our general circle is       (2(√(Rr)) , R^2 +(1/4)+R−r)  eq. of the circle:   { (((x−2(√(Rr)))^2 +[x^2 −(R^2 +(1/4)+R−r)]^2 =r^2 )),(((R+(1/2))^2 −r−(r/(√(1+4x^2 ))) = x^2 )) :}      and   x−2(√(Rr)) = ((r(2x))/(√(1+4x^2 )))   for r=c  but     2(√(Rr))−x=((r(2x))/(√(1+4x^2 )))       for r=a  And since we know x_1 =(√(R^2 −(1/4)))       2(√(Rr_1 ))=x+((2x_1 r)/(√(1+4x_1 ^2 )))       2(√(Ra))=(√(R^2 −(1/4))) + ((2a(√(R^2 −(1/4))))/(√(1+4R^2 −1)))  2(√(Ra))=(√(R^2 −(1/4))) + (a/R)(√(R^2 −(1/4)))  (a/R)(√(R^2 −(1/4))) −2R(√(a/R)) +(√(R^2 −(1/4)))=0  (√(a/R))=(R/(√(R^2 −(1/4))))±(√((R^2 /(R^2 −(1/4)))−1))           (√(a/R)) =((R±(1/2))/(√(R^2 −(1/4))))  ⇒  (a/R)=(((R±(1/2))^2 )/((R+(1/2))(R−(1/2))))  It seems               (a/R)=(((R+(1/2)))/((R−(1/2))))       example   R=2  ⇒   a=((10)/3)   ..........

$${lets}\:{consider}\:{both}\:{circles}\:{of}\:{radii} \\ $$$${a}\:{and}\:{c}\:{generally}. \\ $$$${Both}\:{are}\:{at}\:{a}\:{distance}\:{of}\:\left({R}+{r}\right)\:{from} \\ $$$${center}\:{M}\:{of}\:{circle}\:{of}\:{radius}\:{R}. \\ $$$${Both}\:{touch}\:{the}\:{line}\:{y}={R}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{4}}+{R} \\ $$$${both}\:{touch}\:{the}\:{parabola}\:{at}\:\left({x},{x}^{\mathrm{2}} \right) \\ $$$${x}_{\mathrm{1}} =\sqrt{{R}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}} \\ $$$${center}\:{of}\:{our}\:{general}\:{circle}\:{is} \\ $$$$\:\:\:\:\:\left(\mathrm{2}\sqrt{{Rr}}\:,\:{R}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{4}}+{R}−{r}\right) \\ $$$${eq}.\:{of}\:{the}\:{circle}: \\ $$$$\begin{cases}{\left({x}−\mathrm{2}\sqrt{{Rr}}\right)^{\mathrm{2}} +\left[{x}^{\mathrm{2}} −\left({R}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{4}}+{R}−{r}\right)\right]^{\mathrm{2}} ={r}^{\mathrm{2}} }\\{\left({R}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} −{r}−\frac{{r}}{\sqrt{\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} }}\:=\:{x}^{\mathrm{2}} }\end{cases} \\ $$$$\:\:\:\:{and}\:\:\:{x}−\mathrm{2}\sqrt{{Rr}}\:=\:\frac{{r}\left(\mathrm{2}{x}\right)}{\sqrt{\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} }}\:\:\:{for}\:{r}={c} \\ $$$${but}\:\:\:\:\:\mathrm{2}\sqrt{{Rr}}−{x}=\frac{{r}\left(\mathrm{2}{x}\right)}{\sqrt{\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} }}\:\:\:\:\:\:\:{for}\:{r}={a} \\ $$$${And}\:{since}\:{we}\:{know}\:{x}_{\mathrm{1}} =\sqrt{{R}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}} \\ $$$$\:\:\:\:\:\mathrm{2}\sqrt{{Rr}_{\mathrm{1}} }={x}+\frac{\mathrm{2}{x}_{\mathrm{1}} {r}}{\sqrt{\mathrm{1}+\mathrm{4}{x}_{\mathrm{1}} ^{\mathrm{2}} }} \\ $$$$\:\:\:\:\:\mathrm{2}\sqrt{{Ra}}=\sqrt{{R}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}}\:+\:\frac{\mathrm{2}{a}\sqrt{{R}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}}}{\sqrt{\mathrm{1}+\mathrm{4}{R}^{\mathrm{2}} −\mathrm{1}}} \\ $$$$\mathrm{2}\sqrt{{Ra}}=\sqrt{{R}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}}\:+\:\frac{{a}}{{R}}\sqrt{{R}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}} \\ $$$$\frac{{a}}{{R}}\sqrt{{R}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}}\:−\mathrm{2}{R}\sqrt{\frac{{a}}{{R}}}\:+\sqrt{{R}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}}=\mathrm{0} \\ $$$$\sqrt{\frac{{a}}{{R}}}=\frac{{R}}{\sqrt{{R}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}}}\pm\sqrt{\frac{{R}^{\mathrm{2}} }{{R}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}}−\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:\:\sqrt{\frac{{a}}{{R}}}\:=\frac{{R}\pm\frac{\mathrm{1}}{\mathrm{2}}}{\sqrt{{R}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}}} \\ $$$$\Rightarrow\:\:\frac{{a}}{{R}}=\frac{\left({R}\pm\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }{\left({R}+\frac{\mathrm{1}}{\mathrm{2}}\right)\left({R}−\frac{\mathrm{1}}{\mathrm{2}}\right)} \\ $$$${It}\:{seems}\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\frac{\boldsymbol{{a}}}{\boldsymbol{{R}}}=\frac{\left(\boldsymbol{{R}}+\frac{\mathrm{1}}{\mathrm{2}}\right)}{\left(\boldsymbol{{R}}−\frac{\mathrm{1}}{\mathrm{2}}\right)}\:\:\:\:\: \\ $$$${example}\:\:\:{R}=\mathrm{2}\:\:\Rightarrow\:\:\:{a}=\frac{\mathrm{10}}{\mathrm{3}} \\ $$$$\:..........\:\:\:\:\:\: \\ $$

Commented by ajfour last updated on 05/Jul/20

Answered by mr W last updated on 05/Jul/20

Center of circle with radius R is  M(0,m)  y=x^2   x^2 +(y−m)^2 =R^2   ⇒y+(y−m)^2 =R^2   ⇒y^2 −(2m−1)y+m^2 −R^2 =0  Δ=(2m−1)^2 −4(m^2 −R^2 )=0  1+4R^2 −4m=0  ⇒m=(1/4)+R^2   Center of circle with radius b is  B(0,m+R+b)  x^2 +(y−m−R−b)^2 =b^2   y+[y−((1/4)+R^2 +R+b)]^2 =b^2   y^2 −2(R^2 +R+b−(1/4))y+(R^2 +R+b+(1/4))^2 −b^2 =0  Δ=(R^2 +R+b−(1/4))^2 −(R^2 +R+b+(1/4))^2 +b^2 =0  b^2 −b−(R^2 +R)=0  ⇒b=(1/2)(1+2R+1)=R+1    Center of circle with radius a is  A(2(√(Ra)),m+R−a)  it touches the parabola at P(p, p^2 ).  tan θ=2p=((2(√(Ra)))/(a−R))  ⇒p=((√(Ra))/(a−R))  (2(√(Ra))−p)^2 +(m+R−a−p^2 )^2 =a^2   (2(√(Ra))−((√(Ra))/(a−R)))^2 +[m+R−a−((Ra)/((a−R)^2 ))]^2 =a^2   [2−(1/(R((a/R)−1)))]^2 ((a/R))+(1/R^2 )[m−R((a/R)−1)−((a/R)/(((a/R)−1)^2 ))]^2 =((a/R))^2   [2−(1/(R(ξ−1)))]^2 ξ+(1/R^2 )[(1/4)+R^2 −R(ξ−1)−(ξ/((ξ−1)^2 ))]^2 =ξ^2   ⇒ξ=...    Center of circle with radius c is  C(2(√(Rc)),m+R−c)  it touches the parabola at Q(q, q^2 ).  tan ϕ=2q  q=2(√(Rc))+c sin ϕ=2(√(Rc))+((2cq)/(√(1+4q^2 )))  ⇒q−2(√(Rc))=((2cq)/(√(1+4q^2 )))   ...(i)  q^2 =m+R−c−c cos ϕ=m+R−c−(c/(√(1+4q^2 )))  ⇒m+R−c−q^2 =(c/(√(1+4q^2 )))    ...(ii)  q−2(√(Rc))=2q(m+R−c−q^2 )  q^3 −(R^2 +R−c−(1/4))q−(√(Rc))=0  ⇒q=((((√(Rc))/2)+(√(((Rc)/4)−(((R^2 +R−c−(1/4))^3 )/(27))))))^(1/3) +((((√(Rc))/2)−(√(((Rc)/4)−(((R^2 +R−c−(1/4))^3 )/(27))))))^(1/3)   put this into (i) or (ii) to get c

$${Center}\:{of}\:{circle}\:{with}\:{radius}\:{R}\:{is} \\ $$$${M}\left(\mathrm{0},{m}\right) \\ $$$${y}={x}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} +\left({y}−{m}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$$\Rightarrow{y}+\left({y}−{m}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$$\Rightarrow{y}^{\mathrm{2}} −\left(\mathrm{2}{m}−\mathrm{1}\right){y}+{m}^{\mathrm{2}} −{R}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Delta=\left(\mathrm{2}{m}−\mathrm{1}\right)^{\mathrm{2}} −\mathrm{4}\left({m}^{\mathrm{2}} −{R}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\mathrm{1}+\mathrm{4}{R}^{\mathrm{2}} −\mathrm{4}{m}=\mathrm{0} \\ $$$$\Rightarrow{m}=\frac{\mathrm{1}}{\mathrm{4}}+{R}^{\mathrm{2}} \\ $$$${Center}\:{of}\:{circle}\:{with}\:{radius}\:{b}\:{is} \\ $$$${B}\left(\mathrm{0},{m}+{R}+{b}\right) \\ $$$${x}^{\mathrm{2}} +\left({y}−{m}−{R}−{b}\right)^{\mathrm{2}} ={b}^{\mathrm{2}} \\ $$$${y}+\left[{y}−\left(\frac{\mathrm{1}}{\mathrm{4}}+{R}^{\mathrm{2}} +{R}+{b}\right)\right]^{\mathrm{2}} ={b}^{\mathrm{2}} \\ $$$${y}^{\mathrm{2}} −\mathrm{2}\left({R}^{\mathrm{2}} +{R}+{b}−\frac{\mathrm{1}}{\mathrm{4}}\right){y}+\left({R}^{\mathrm{2}} +{R}+{b}+\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{2}} −{b}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Delta=\left({R}^{\mathrm{2}} +{R}+{b}−\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{2}} −\left({R}^{\mathrm{2}} +{R}+{b}+\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{0} \\ $$$${b}^{\mathrm{2}} −{b}−\left({R}^{\mathrm{2}} +{R}\right)=\mathrm{0} \\ $$$$\Rightarrow{b}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\mathrm{2}{R}+\mathrm{1}\right)={R}+\mathrm{1} \\ $$$$ \\ $$$${Center}\:{of}\:{circle}\:{with}\:{radius}\:{a}\:{is} \\ $$$${A}\left(\mathrm{2}\sqrt{{Ra}},{m}+{R}−{a}\right) \\ $$$${it}\:{touches}\:{the}\:{parabola}\:{at}\:{P}\left({p},\:{p}^{\mathrm{2}} \right). \\ $$$$\mathrm{tan}\:\theta=\mathrm{2}{p}=\frac{\mathrm{2}\sqrt{{Ra}}}{{a}−{R}} \\ $$$$\Rightarrow{p}=\frac{\sqrt{{Ra}}}{{a}−{R}} \\ $$$$\left(\mathrm{2}\sqrt{{Ra}}−{p}\right)^{\mathrm{2}} +\left({m}+{R}−{a}−{p}^{\mathrm{2}} \right)^{\mathrm{2}} ={a}^{\mathrm{2}} \\ $$$$\left(\mathrm{2}\sqrt{{Ra}}−\frac{\sqrt{{Ra}}}{{a}−{R}}\right)^{\mathrm{2}} +\left[{m}+{R}−{a}−\frac{{Ra}}{\left({a}−{R}\right)^{\mathrm{2}} }\right]^{\mathrm{2}} ={a}^{\mathrm{2}} \\ $$$$\left[\mathrm{2}−\frac{\mathrm{1}}{{R}\left(\frac{{a}}{{R}}−\mathrm{1}\right)}\right]^{\mathrm{2}} \left(\frac{{a}}{{R}}\right)+\frac{\mathrm{1}}{{R}^{\mathrm{2}} }\left[{m}−{R}\left(\frac{{a}}{{R}}−\mathrm{1}\right)−\frac{\frac{{a}}{{R}}}{\left(\frac{{a}}{{R}}−\mathrm{1}\right)^{\mathrm{2}} }\right]^{\mathrm{2}} =\left(\frac{{a}}{{R}}\right)^{\mathrm{2}} \\ $$$$\left[\mathrm{2}−\frac{\mathrm{1}}{{R}\left(\xi−\mathrm{1}\right)}\right]^{\mathrm{2}} \xi+\frac{\mathrm{1}}{{R}^{\mathrm{2}} }\left[\frac{\mathrm{1}}{\mathrm{4}}+{R}^{\mathrm{2}} −{R}\left(\xi−\mathrm{1}\right)−\frac{\xi}{\left(\xi−\mathrm{1}\right)^{\mathrm{2}} }\right]^{\mathrm{2}} =\xi^{\mathrm{2}} \\ $$$$\Rightarrow\xi=... \\ $$$$ \\ $$$${Center}\:{of}\:{circle}\:{with}\:{radius}\:{c}\:{is} \\ $$$${C}\left(\mathrm{2}\sqrt{{Rc}},{m}+{R}−{c}\right) \\ $$$${it}\:{touches}\:{the}\:{parabola}\:{at}\:{Q}\left({q},\:{q}^{\mathrm{2}} \right). \\ $$$$\mathrm{tan}\:\varphi=\mathrm{2}{q} \\ $$$${q}=\mathrm{2}\sqrt{{Rc}}+{c}\:\mathrm{sin}\:\varphi=\mathrm{2}\sqrt{{Rc}}+\frac{\mathrm{2}{cq}}{\sqrt{\mathrm{1}+\mathrm{4}{q}^{\mathrm{2}} }} \\ $$$$\Rightarrow{q}−\mathrm{2}\sqrt{{Rc}}=\frac{\mathrm{2}{cq}}{\sqrt{\mathrm{1}+\mathrm{4}{q}^{\mathrm{2}} }}\:\:\:...\left({i}\right) \\ $$$${q}^{\mathrm{2}} ={m}+{R}−{c}−{c}\:\mathrm{cos}\:\varphi={m}+{R}−{c}−\frac{{c}}{\sqrt{\mathrm{1}+\mathrm{4}{q}^{\mathrm{2}} }} \\ $$$$\Rightarrow{m}+{R}−{c}−{q}^{\mathrm{2}} =\frac{{c}}{\sqrt{\mathrm{1}+\mathrm{4}{q}^{\mathrm{2}} }}\:\:\:\:...\left({ii}\right) \\ $$$${q}−\mathrm{2}\sqrt{{Rc}}=\mathrm{2}{q}\left({m}+{R}−{c}−{q}^{\mathrm{2}} \right) \\ $$$${q}^{\mathrm{3}} −\left({R}^{\mathrm{2}} +{R}−{c}−\frac{\mathrm{1}}{\mathrm{4}}\right){q}−\sqrt{{Rc}}=\mathrm{0} \\ $$$$\Rightarrow{q}=\sqrt[{\mathrm{3}}]{\frac{\sqrt{{Rc}}}{\mathrm{2}}+\sqrt{\frac{{Rc}}{\mathrm{4}}−\frac{\left({R}^{\mathrm{2}} +{R}−{c}−\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{3}} }{\mathrm{27}}}}+\sqrt[{\mathrm{3}}]{\frac{\sqrt{{Rc}}}{\mathrm{2}}−\sqrt{\frac{{Rc}}{\mathrm{4}}−\frac{\left({R}^{\mathrm{2}} +{R}−{c}−\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{3}} }{\mathrm{27}}}} \\ $$$${put}\:{this}\:{into}\:\left({i}\right)\:{or}\:\left({ii}\right)\:{to}\:{get}\:{c} \\ $$

Commented by mr W last updated on 05/Jul/20

Commented by ajfour last updated on 05/Jul/20

but c is to be determined, Sir.

$${but}\:{c}\:{is}\:{to}\:{be}\:{determined},\:{Sir}. \\ $$

Commented by mr W last updated on 05/Jul/20

a and c can only be determined   numerically.

$${a}\:{and}\:{c}\:{can}\:{only}\:{be}\:{determined}\: \\ $$$${numerically}. \\ $$

Commented by ajfour last updated on 05/Jul/20

if we discuss, i think we can get the  expression for radii a and c , Sir..

$${if}\:{we}\:{discuss},\:{i}\:{think}\:{we}\:{can}\:{get}\:{the} \\ $$$${expression}\:{for}\:{radii}\:{a}\:{and}\:{c}\:,\:{Sir}.. \\ $$

Commented by mr W last updated on 05/Jul/20

i found no way to get them.

$${i}\:{found}\:{no}\:{way}\:{to}\:{get}\:{them}. \\ $$

Commented by ajfour last updated on 06/Jul/20

    Sir i got  a=R(R+1/2)/(R−1/2)  Expression for c indeed seems  difficult.

$$\:\:\:\:{Sir}\:{i}\:{got}\:\:{a}={R}\left({R}+\mathrm{1}/\mathrm{2}\right)/\left({R}−\mathrm{1}/\mathrm{2}\right) \\ $$$${Expression}\:{for}\:{c}\:{indeed}\:{seems} \\ $$$${difficult}. \\ $$

Commented by mr W last updated on 06/Jul/20

you got it at least for a! it′s correct.

$${you}\:{got}\:{it}\:{at}\:{least}\:{for}\:{a}!\:{it}'{s}\:{correct}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com