Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 101473 by 175 last updated on 02/Jul/20

Answered by 1549442205 last updated on 03/Jul/20

  We prove by induction method that  ∃m∈N such that   A_n =(2+(√2))^n =(m_n +(√(m_n ^2 −2^n )))and q_n =(√((m_n ^2 −2^n )/2))∈N  A_n =m_n +q_n (√2)  +For n=1 we have 2+(√2)=2+(√(2^2 −2))  and (√((2^2 −2)/2))=1∈N⇒State true  +Suppose State was true for ∀n≤k  means that we had A_k =(2+(√2))^k =(m_k +(√(m_k ^2 −2^k )))  and q_k =(√((m_k ^2 −2^k )/2))∈N,A_k =m_k +q_k (√2)  +Then A_(k+1) =(2+(√2))^(k+1) =(2+(√2))^k (2+(√2))  =A_k (2+(√2))=(m_k +(√(m_k ^2 −2^k )))(2+(√2))  =2m_k +(√(2m_k ^2 −2^(k+1) ))+(√2)m_k +2(√(m_k ^2 −2^k ))  =(2m_k +2(√((m_k ^2 −2^k )/2)))+(√2)(m_k +(√(2m_k ^2 −2^(k+1) )))  =2m_k +2q_k +(m_k +2q_k )(√2)=2(m_k +q_k )+(√(2(m_k +2q_k )^2 ))  =2(m_k +q_k )+(√(2m_k ^2 +8m_k q_k +8q_k ^2 ))  =2(m_k +q_k )+(√(2m_k ^2 +8m_k q_k +4q_k ^2 +4.((m_k ^2 −2^k )/2)))  =2(m_k +q_k )+(√((4m_k ^2 +8m_k q_k +4q_k ^2 )−2^(k+1) ))  =2(m_k +q_k )+(√(4(m_k +q_k )^2 −2^(k+1) .))  Putting m_(k+1) =2(m_k +q_k ),q_(k+1) =m_k +2q_k    then A_(k+1) =m_(k+1) +(√(m_(k+1) ^2 −2^(k+1) ))and   q_(k+1=) (√(((m_(k+1) ^2 −2^(k+1) )/2) )) ∈N which shows  that State is true for n=k+1  By indution principle State is true   ∀n∈N .Thus,there is always exists a  natural number m so that  (2+(√2))^n =(m+(√(m^2 −2^n )) ∀n∈N (q.e.d)

$$ \\ $$$$\mathrm{We}\:\mathrm{prove}\:\mathrm{by}\:\mathrm{induction}\:\mathrm{method}\:\mathrm{that} \\ $$$$\exists\mathrm{m}\in\boldsymbol{\mathrm{N}}\:\mathrm{such}\:\mathrm{that}\: \\ $$$$\mathrm{A}_{\mathrm{n}} =\left(\mathrm{2}+\sqrt{\mathrm{2}}\right)^{\mathrm{n}} =\left(\mathrm{m}_{\mathrm{n}} +\sqrt{\mathrm{m}_{\mathrm{n}} ^{\mathrm{2}} −\mathrm{2}^{\mathrm{n}} }\right)\mathrm{and}\:\mathrm{q}_{\mathrm{n}} =\sqrt{\frac{\mathrm{m}_{\mathrm{n}} ^{\mathrm{2}} −\mathrm{2}^{\mathrm{n}} }{\mathrm{2}}}\in\mathbb{N} \\ $$$$\mathrm{A}_{\mathrm{n}} =\mathrm{m}_{\mathrm{n}} +\mathrm{q}_{\mathrm{n}} \sqrt{\mathrm{2}} \\ $$$$+\mathrm{For}\:\mathrm{n}=\mathrm{1}\:\mathrm{we}\:\mathrm{have}\:\mathrm{2}+\sqrt{\mathrm{2}}=\mathrm{2}+\sqrt{\mathrm{2}^{\mathrm{2}} −\mathrm{2}} \\ $$$$\mathrm{and}\:\sqrt{\frac{\mathrm{2}^{\mathrm{2}} −\mathrm{2}}{\mathrm{2}}}=\mathrm{1}\in\boldsymbol{\mathrm{N}}\Rightarrow\mathrm{State}\:\mathrm{true} \\ $$$$+\mathrm{Suppose}\:\mathrm{State}\:\mathrm{was}\:\mathrm{true}\:\mathrm{for}\:\forall\mathrm{n}\leqslant\mathrm{k} \\ $$$$\mathrm{means}\:\mathrm{that}\:\mathrm{we}\:\mathrm{had}\:\mathrm{A}_{\mathrm{k}} =\left(\mathrm{2}+\sqrt{\mathrm{2}}\right)^{\mathrm{k}} =\left(\mathrm{m}_{\mathrm{k}} +\sqrt{\mathrm{m}_{\mathrm{k}} ^{\mathrm{2}} −\mathrm{2}^{\mathrm{k}} }\right) \\ $$$$\mathrm{and}\:\mathrm{q}_{\mathrm{k}} =\sqrt{\frac{\mathrm{m}_{\mathrm{k}} ^{\mathrm{2}} −\mathrm{2}^{\mathrm{k}} }{\mathrm{2}}}\in\boldsymbol{\mathrm{N}},\mathrm{A}_{\mathrm{k}} =\mathrm{m}_{\mathrm{k}} +\mathrm{q}_{\mathrm{k}} \sqrt{\mathrm{2}} \\ $$$$+\mathrm{Then}\:\mathrm{A}_{\mathrm{k}+\mathrm{1}} =\left(\mathrm{2}+\sqrt{\mathrm{2}}\right)^{\mathrm{k}+\mathrm{1}} =\left(\mathrm{2}+\sqrt{\mathrm{2}}\right)^{\mathrm{k}} \left(\mathrm{2}+\sqrt{\mathrm{2}}\right) \\ $$$$=\mathrm{A}_{\mathrm{k}} \left(\mathrm{2}+\sqrt{\mathrm{2}}\right)=\left(\mathrm{m}_{\mathrm{k}} +\sqrt{\mathrm{m}_{\mathrm{k}} ^{\mathrm{2}} −\mathrm{2}^{\mathrm{k}} }\right)\left(\mathrm{2}+\sqrt{\mathrm{2}}\right) \\ $$$$=\mathrm{2m}_{\mathrm{k}} +\sqrt{\mathrm{2m}_{\mathrm{k}} ^{\mathrm{2}} −\mathrm{2}^{\mathrm{k}+\mathrm{1}} }+\sqrt{\mathrm{2}}\mathrm{m}_{\mathrm{k}} +\mathrm{2}\sqrt{\mathrm{m}_{\mathrm{k}} ^{\mathrm{2}} −\mathrm{2}^{\mathrm{k}} } \\ $$$$=\left(\mathrm{2m}_{\mathrm{k}} +\mathrm{2}\sqrt{\frac{\mathrm{m}_{\mathrm{k}} ^{\mathrm{2}} −\mathrm{2}^{\mathrm{k}} }{\mathrm{2}}}\right)+\sqrt{\mathrm{2}}\left(\mathrm{m}_{\mathrm{k}} +\sqrt{\mathrm{2m}_{\mathrm{k}} ^{\mathrm{2}} −\mathrm{2}^{\mathrm{k}+\mathrm{1}} }\right) \\ $$$$=\mathrm{2m}_{\mathrm{k}} +\mathrm{2q}_{\mathrm{k}} +\left(\mathrm{m}_{\mathrm{k}} +\mathrm{2q}_{\mathrm{k}} \right)\sqrt{\mathrm{2}}=\mathrm{2}\left(\mathrm{m}_{\mathrm{k}} +\mathrm{q}_{\mathrm{k}} \right)+\sqrt{\mathrm{2}\left(\mathrm{m}_{\mathrm{k}} +\mathrm{2q}_{\mathrm{k}} \right)^{\mathrm{2}} } \\ $$$$=\mathrm{2}\left(\mathrm{m}_{\mathrm{k}} +\mathrm{q}_{\mathrm{k}} \right)+\sqrt{\mathrm{2m}_{\mathrm{k}} ^{\mathrm{2}} +\mathrm{8m}_{\mathrm{k}} \mathrm{q}_{\mathrm{k}} +\mathrm{8q}_{\mathrm{k}} ^{\mathrm{2}} } \\ $$$$=\mathrm{2}\left(\mathrm{m}_{\mathrm{k}} +\mathrm{q}_{\mathrm{k}} \right)+\sqrt{\mathrm{2m}_{\mathrm{k}} ^{\mathrm{2}} +\mathrm{8m}_{\mathrm{k}} \mathrm{q}_{\mathrm{k}} +\mathrm{4q}_{\mathrm{k}} ^{\mathrm{2}} +\mathrm{4}.\frac{\mathrm{m}_{\mathrm{k}} ^{\mathrm{2}} −\mathrm{2}^{\mathrm{k}} }{\mathrm{2}}} \\ $$$$=\mathrm{2}\left(\mathrm{m}_{\mathrm{k}} +\mathrm{q}_{\mathrm{k}} \right)+\sqrt{\left(\mathrm{4m}_{\mathrm{k}} ^{\mathrm{2}} +\mathrm{8m}_{\mathrm{k}} \mathrm{q}_{\mathrm{k}} +\mathrm{4q}_{\mathrm{k}} ^{\mathrm{2}} \right)−\mathrm{2}^{\mathrm{k}+\mathrm{1}} } \\ $$$$=\mathrm{2}\left(\mathrm{m}_{\mathrm{k}} +\mathrm{q}_{\mathrm{k}} \right)+\sqrt{\mathrm{4}\left(\mathrm{m}_{\mathrm{k}} +\mathrm{q}_{\mathrm{k}} \right)^{\mathrm{2}} −\mathrm{2}^{\mathrm{k}+\mathrm{1}} .} \\ $$$$\mathrm{Putting}\:\mathrm{m}_{\mathrm{k}+\mathrm{1}} =\mathrm{2}\left(\mathrm{m}_{\mathrm{k}} +\mathrm{q}_{\mathrm{k}} \right),\mathrm{q}_{\mathrm{k}+\mathrm{1}} =\mathrm{m}_{\mathrm{k}} +\mathrm{2q}_{\mathrm{k}} \\ $$$$\:\mathrm{then}\:\mathrm{A}_{\mathrm{k}+\mathrm{1}} =\mathrm{m}_{\mathrm{k}+\mathrm{1}} +\sqrt{\mathrm{m}_{\mathrm{k}+\mathrm{1}} ^{\mathrm{2}} −\mathrm{2}^{\mathrm{k}+\mathrm{1}} }\mathrm{and}\: \\ $$$$\mathrm{q}_{\mathrm{k}+\mathrm{1}=} \sqrt{\frac{\mathrm{m}_{\mathrm{k}+\mathrm{1}} ^{\mathrm{2}} −\mathrm{2}^{\mathrm{k}+\mathrm{1}} }{\mathrm{2}}\:}\:\in\boldsymbol{\mathrm{N}}\:\mathrm{which}\:\mathrm{shows} \\ $$$$\mathrm{that}\:\mathrm{State}\:\mathrm{is}\:\mathrm{true}\:\mathrm{for}\:\mathrm{n}=\mathrm{k}+\mathrm{1} \\ $$$$\mathrm{By}\:\mathrm{indution}\:\mathrm{principle}\:\mathrm{State}\:\mathrm{is}\:\mathrm{true}\: \\ $$$$\forall\mathrm{n}\in\boldsymbol{\mathrm{N}}\:.\mathrm{Thus},\mathrm{there}\:\mathrm{is}\:\mathrm{always}\:\mathrm{exists}\:\mathrm{a} \\ $$$$\mathrm{natural}\:\mathrm{number}\:\mathrm{m}\:\mathrm{so}\:\mathrm{that} \\ $$$$\left(\mathrm{2}+\sqrt{\mathrm{2}}\right)^{\boldsymbol{\mathrm{n}}} =\left(\boldsymbol{\mathrm{m}}+\sqrt{\boldsymbol{\mathrm{m}}^{\mathrm{2}} −\mathrm{2}^{\boldsymbol{\mathrm{n}}} }\:\forall\boldsymbol{\mathrm{n}}\in\boldsymbol{\mathrm{N}}\:\left(\boldsymbol{\mathrm{q}}.\boldsymbol{\mathrm{e}}.\boldsymbol{\mathrm{d}}\right)\right. \\ $$

Commented by 175 last updated on 03/Jul/20

thank, please answer the quation 2

Commented by 175 last updated on 03/Jul/20

khd

Commented by 1549442205 last updated on 04/Jul/20

You are welcome sir.

$$\mathrm{You}\:\mathrm{are}\:\mathrm{welcome}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com