Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 101546 by mhmd last updated on 03/Jul/20

Commented by mhmd last updated on 03/Jul/20

help me sir

$${help}\:{me}\:{sir} \\ $$

Answered by bobhans last updated on 03/Jul/20

(Q4) Area=2∫_0 ^3  9x^2 −x^4  dx =2(3x^3 −(1/5)x^5 )_0 ^3   = 2(81−((243)/5)) = 162(1−(3/5))= ((324)/5) ♥

$$\left(\mathrm{Q4}\right)\:\mathrm{Area}=\mathrm{2}\underset{\mathrm{0}} {\overset{\mathrm{3}} {\int}}\:\mathrm{9x}^{\mathrm{2}} −\mathrm{x}^{\mathrm{4}} \:\mathrm{dx}\:=\mathrm{2}\left(\mathrm{3x}^{\mathrm{3}} −\frac{\mathrm{1}}{\mathrm{5}}\mathrm{x}^{\mathrm{5}} \right)_{\mathrm{0}} ^{\mathrm{3}} \\ $$$$=\:\mathrm{2}\left(\mathrm{81}−\frac{\mathrm{243}}{\mathrm{5}}\right)\:=\:\mathrm{162}\left(\mathrm{1}−\frac{\mathrm{3}}{\mathrm{5}}\right)=\:\frac{\mathrm{324}}{\mathrm{5}}\:\heartsuit \\ $$

Commented by mhmd last updated on 03/Jul/20

thank you sir can you help me in question one?

$${thank}\:{you}\:{sir}\:{can}\:{you}\:{help}\:{me}\:{in}\:{question}\:{one}? \\ $$

Answered by john santu last updated on 03/Jul/20

(Q3) (dy/(sin 2x)) = sec ((√y)) dx  (dy/((√y) )) = sin 2x dx ⇒∫ y^(−(1/2)) dy = ∫ sin 2x dx  2(√y) = −(1/2) cos 2x + c   (√y) = −(1/4) cos 2x + c   ∴ y = (c −(1/4)cos 2x)^2  ⊛

$$\left(\mathrm{Q3}\right)\:\frac{\mathrm{dy}}{\mathrm{sin}\:\mathrm{2x}}\:=\:\mathrm{sec}\:\left(\sqrt{\mathrm{y}}\right)\:\mathrm{dx} \\ $$$$\frac{\mathrm{dy}}{\sqrt{\mathrm{y}}\:}\:=\:\mathrm{sin}\:\mathrm{2x}\:\mathrm{dx}\:\Rightarrow\int\:\mathrm{y}^{−\frac{\mathrm{1}}{\mathrm{2}}} \mathrm{dy}\:=\:\int\:\mathrm{sin}\:\mathrm{2x}\:\mathrm{dx} \\ $$$$\mathrm{2}\sqrt{\mathrm{y}}\:=\:−\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{cos}\:\mathrm{2x}\:+\:\mathrm{c}\: \\ $$$$\sqrt{\mathrm{y}}\:=\:−\frac{\mathrm{1}}{\mathrm{4}}\:\mathrm{cos}\:\mathrm{2x}\:+\:\mathrm{c}\: \\ $$$$\therefore\:\mathrm{y}\:=\:\left(\mathrm{c}\:−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{cos}\:\mathrm{2x}\right)^{\mathrm{2}} \:\circledast\: \\ $$

Answered by abdomathmax last updated on 03/Jul/20

Q_2 )    ∫_0 ^2  (∫_0 ^(2π) (5ysin(5y)+xe^x )dydx  =∫_0 ^2 A(x)dx with A(x) =∫_0 ^(2π) (5ysin(5y)+xe^x )dy  A(x) =5 ∫_0 ^(2π)  ysin(5y)dy +2πxe^x   =5{ [−(y/5)cos(5y)]_0 ^(2π) +(1/5)∫_0 ^(2π) cos(5y)dy}+2πxe^x   =5{−((2π)/5) +(1/(25))[sin(5y)]_0 ^(2π) } +2πxe^x   =−2π +2πxe^x  ⇒  I =∫_0 ^2 (−2π+2πxe^x )dx =−4π +2π ∫_0 ^2  xe^x  dx  =−4π +2π{ [xe^x ]_0 ^2 −∫_0 ^2  e^x dx}  =−4π +2π{2e^2 −(e^2 −1)}  =−4π +2π{e^2  +1)  =−2π +2πe^2

$$\left.\mathrm{Q}_{\mathrm{2}} \right)\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{2}} \:\left(\int_{\mathrm{0}} ^{\mathrm{2}\pi} \left(\mathrm{5ysin}\left(\mathrm{5y}\right)+\mathrm{xe}^{\mathrm{x}} \right)\mathrm{dydx}\right. \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{2}} \mathrm{A}\left(\mathrm{x}\right)\mathrm{dx}\:\mathrm{with}\:\mathrm{A}\left(\mathrm{x}\right)\:=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \left(\mathrm{5ysin}\left(\mathrm{5y}\right)+\mathrm{xe}^{\mathrm{x}} \right)\mathrm{dy} \\ $$$$\mathrm{A}\left(\mathrm{x}\right)\:=\mathrm{5}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\mathrm{ysin}\left(\mathrm{5y}\right)\mathrm{dy}\:+\mathrm{2}\pi\mathrm{xe}^{\mathrm{x}} \\ $$$$=\mathrm{5}\left\{\:\left[−\frac{\mathrm{y}}{\mathrm{5}}\mathrm{cos}\left(\mathrm{5y}\right)\right]_{\mathrm{0}} ^{\mathrm{2}\pi} +\frac{\mathrm{1}}{\mathrm{5}}\int_{\mathrm{0}} ^{\mathrm{2}\pi} \mathrm{cos}\left(\mathrm{5y}\right)\mathrm{dy}\right\}+\mathrm{2}\pi\mathrm{xe}^{\mathrm{x}} \\ $$$$=\mathrm{5}\left\{−\frac{\mathrm{2}\pi}{\mathrm{5}}\:+\frac{\mathrm{1}}{\mathrm{25}}\left[\mathrm{sin}\left(\mathrm{5y}\right)\right]_{\mathrm{0}} ^{\mathrm{2}\pi} \right\}\:+\mathrm{2}\pi\mathrm{xe}^{\mathrm{x}} \\ $$$$=−\mathrm{2}\pi\:+\mathrm{2}\pi\mathrm{xe}^{\mathrm{x}} \:\Rightarrow \\ $$$$\mathrm{I}\:=\int_{\mathrm{0}} ^{\mathrm{2}} \left(−\mathrm{2}\pi+\mathrm{2}\pi\mathrm{xe}^{\mathrm{x}} \right)\mathrm{dx}\:=−\mathrm{4}\pi\:+\mathrm{2}\pi\:\int_{\mathrm{0}} ^{\mathrm{2}} \:\mathrm{xe}^{\mathrm{x}} \:\mathrm{dx} \\ $$$$=−\mathrm{4}\pi\:+\mathrm{2}\pi\left\{\:\left[\mathrm{xe}^{\mathrm{x}} \right]_{\mathrm{0}} ^{\mathrm{2}} −\int_{\mathrm{0}} ^{\mathrm{2}} \:\mathrm{e}^{\mathrm{x}} \mathrm{dx}\right\} \\ $$$$=−\mathrm{4}\pi\:+\mathrm{2}\pi\left\{\mathrm{2e}^{\mathrm{2}} −\left(\mathrm{e}^{\mathrm{2}} −\mathrm{1}\right)\right\} \\ $$$$=−\mathrm{4}\pi\:+\mathrm{2}\pi\left\{\mathrm{e}^{\mathrm{2}} \:+\mathrm{1}\right) \\ $$$$=−\mathrm{2}\pi\:+\mathrm{2}\pi\mathrm{e}^{\mathrm{2}} \\ $$$$ \\ $$

Answered by john santu last updated on 04/Jul/20

(Q1) unit vector of A →e^� =((2i−4j+4k)/(√(36))) = (1/3)i−(2/3)j+(2/3)k  →▽φ= 12xi +3zj +(3y−2z)k at (1,−2,1)  ▽φ= 12i −6j −8k  directional derivative   → ∣e^� . ▽φ∣ = (1/3).(12)+((2/3)).(6)−(2/3)(8)  =((12+12−16)/3) = (8/3) ⊛

$$\left(\mathrm{Q1}\right)\:\mathrm{unit}\:\mathrm{vector}\:\mathrm{of}\:\mathrm{A}\:\rightarrow\hat {\mathrm{e}}=\frac{\mathrm{2}{i}−\mathrm{4}{j}+\mathrm{4}{k}}{\sqrt{\mathrm{36}}}\:=\:\frac{\mathrm{1}}{\mathrm{3}}{i}−\frac{\mathrm{2}}{\mathrm{3}}{j}+\frac{\mathrm{2}}{\mathrm{3}}{k} \\ $$$$\rightarrow\bigtriangledown\phi=\:\mathrm{12x}{i}\:+\mathrm{3}{zj}\:+\left(\mathrm{3}{y}−\mathrm{2}{z}\right){k}\:\mathrm{at}\:\left(\mathrm{1},−\mathrm{2},\mathrm{1}\right) \\ $$$$\bigtriangledown\phi=\:\mathrm{12}{i}\:−\mathrm{6}{j}\:−\mathrm{8}{k} \\ $$$${directional}\:{derivative}\: \\ $$$$\rightarrow\:\mid\hat {\mathrm{e}}.\:\bigtriangledown\phi\mid\:=\:\frac{\mathrm{1}}{\mathrm{3}}.\left(\mathrm{12}\right)+\left(\frac{\mathrm{2}}{\mathrm{3}}\right).\left(\mathrm{6}\right)−\frac{\mathrm{2}}{\mathrm{3}}\left(\mathrm{8}\right) \\ $$$$=\frac{\mathrm{12}+\mathrm{12}−\mathrm{16}}{\mathrm{3}}\:=\:\frac{\mathrm{8}}{\mathrm{3}}\:\circledast\:\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com