Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 101800 by Quvonchbek last updated on 04/Jul/20

Commented by mr W last updated on 05/Jul/20

very interesting! thanks sir!

$${very}\:{interesting}!\:{thanks}\:{sir}! \\ $$

Commented by mr W last updated on 04/Jul/20

what is the question?

$${what}\:{is}\:{the}\:{question}? \\ $$

Commented by prakash jain last updated on 05/Jul/20

http://ramanujan.sirinudi.org/Volumes/published/ram03.html Check above link for more theoritical description. in fact same equation is also covered answer that i added is same steps and some help from online simultaneous equation solvers

Answered by prakash jain last updated on 05/Jul/20

g(k)=(x/(1−kp))=x(1+kp+k^2 p^2 +....)  f(k)=(x/(1−kp))+(y/(1−kq))+(z/(1−kr))+(u/(1−ks))+(v/(1−kt))  =(x+y+z+u+v)       +k(px+qy+rz+su+tv)        +k^2 (p^2 x+..+t^2 v)         +k^9 (p^9 x+q^9 y+..+t^9 v)          +higher powers of k  f(k)=((A_0 +A_1 k+A_2 k^2 +A_3 k^3 +A_4 k^4 )/(1+B_1 k+B_2 k^2 +B_3 k^3 +B_4 k^4 +B_5 k^5 ))  comparing with given equation  and equating  A_0 +A_1 k+A_2 k^2 +A_3 k^3 +A_4 k^4   =(1+B_1 k+B_2 k^2 +B_3 k^3 +B_4 k^4 +B_5 k^5 )       ×(2+3k+16k^2 +31k^3 +103k^4      +235k^5 +674k^6 +1669k^7 +4326k^8 +11595k^9 +...)  A_0 =1   (k^0 )  A_1 =2B_1 +3    (k^1 )  A_2 =3B_1 +2B_2 +16   (k^2 )  A_3 =31+16B_1 +3B_2 +2B_3     (k^3 )  A_4 =103+31B_1 +16B_2 +3B_3 +2B_4   0=235+103B_1 +31B_2 +16B_3 +3B_4 +2B_5   0=674+235B_1 +103B_2 +31B_3 +16B_4 +3B_5   0=1669+674B_1 +235B_2 +103B_3 +31B_4 +16B_5   0=4526+1669B1+674B_2 +235B_3 +103B_4 +31B_5   0=11595+4526B_1 +1669B_2 +674B_3 +235B_4 +103B_5   B_1 =−1  B_2 =−5  B_3 =1  B_4 =3  B_5 =−1  A_1 =1  A_2 =3  A_3 =2  A_4 =1  f(k)=((1+k+3k^2 +2k^3 +k^4 )/(1−k−5k^2 +k^3 +3k^4 −k^5 ))  Partial fraction  =((29−46k)/(10(k^2 −3k+1)))+((8k+3)/(2(k^2 −k−1)))−(2/(5(k+1)))  ((29−46k)/(10(k^2 −3k+1)))=((29−46k)/(10(k−(((3+(√5))/2))(k−((3−(√5))/2))))  Also need to decome((8k+3)/(k^2 −k−1)) into  linear partial fraction  so we will get  −(2/(5(k+1)))+4 more linear part fractions.  ((A_0 +A_1 k+A_2 k^2 +A_3 k^3 +A_4 k^4 )/(1+B_1 k+B_2 k^2 +B_3 k^3 +B_4 k^4 +B_5 k^5 ))  =(x/(1−kp))+(y/(1−kq))+(z/(1−kr))+(u/(1−ks))+(v/(1−kt))  After comparing partial fraction  with brown expression we can  see that (x,p)=(−(2/5),−1)  remaining pairs (y,q),(z,r),(u,s),(v,t)  can be calculated from remaining  4 partial fractions.  All pairs are interchangable due  to symmetry

$${g}\left({k}\right)=\frac{{x}}{\mathrm{1}−{kp}}={x}\left(\mathrm{1}+{kp}+{k}^{\mathrm{2}} {p}^{\mathrm{2}} +....\right) \\ $$$${f}\left({k}\right)=\frac{{x}}{\mathrm{1}−{kp}}+\frac{{y}}{\mathrm{1}−{kq}}+\frac{{z}}{\mathrm{1}−{kr}}+\frac{{u}}{\mathrm{1}−{ks}}+\frac{{v}}{\mathrm{1}−{kt}} \\ $$$$=\left({x}+{y}+{z}+{u}+{v}\right) \\ $$$$\:\:\:\:\:+{k}\left({px}+{qy}+{rz}+{su}+{tv}\right) \\ $$$$\:\:\:\:\:\:+{k}^{\mathrm{2}} \left({p}^{\mathrm{2}} {x}+..+{t}^{\mathrm{2}} {v}\right) \\ $$$$\:\:\:\:\:\:\:+{k}^{\mathrm{9}} \left({p}^{\mathrm{9}} {x}+{q}^{\mathrm{9}} {y}+..+{t}^{\mathrm{9}} {v}\right) \\ $$$$\:\:\:\:\:\:\:\:+{higher}\:{powers}\:{of}\:{k} \\ $$$${f}\left({k}\right)=\frac{{A}_{\mathrm{0}} +{A}_{\mathrm{1}} {k}+{A}_{\mathrm{2}} {k}^{\mathrm{2}} +{A}_{\mathrm{3}} {k}^{\mathrm{3}} +{A}_{\mathrm{4}} {k}^{\mathrm{4}} }{\mathrm{1}+{B}_{\mathrm{1}} {k}+{B}_{\mathrm{2}} {k}^{\mathrm{2}} +{B}_{\mathrm{3}} {k}^{\mathrm{3}} +{B}_{\mathrm{4}} {k}^{\mathrm{4}} +{B}_{\mathrm{5}} {k}^{\mathrm{5}} } \\ $$$${comparing}\:{with}\:{given}\:{equation} \\ $$$${and}\:{equating} \\ $$$${A}_{\mathrm{0}} +{A}_{\mathrm{1}} {k}+{A}_{\mathrm{2}} {k}^{\mathrm{2}} +{A}_{\mathrm{3}} {k}^{\mathrm{3}} +{A}_{\mathrm{4}} {k}^{\mathrm{4}} \\ $$$$=\left(\mathrm{1}+{B}_{\mathrm{1}} {k}+{B}_{\mathrm{2}} {k}^{\mathrm{2}} +{B}_{\mathrm{3}} {k}^{\mathrm{3}} +{B}_{\mathrm{4}} {k}^{\mathrm{4}} +{B}_{\mathrm{5}} {k}^{\mathrm{5}} \right) \\ $$$$\:\:\:\:\:×\left(\mathrm{2}+\mathrm{3}{k}+\mathrm{16}{k}^{\mathrm{2}} +\mathrm{31}{k}^{\mathrm{3}} +\mathrm{103}{k}^{\mathrm{4}} \right. \\ $$$$\left.\:\:\:+\mathrm{235}{k}^{\mathrm{5}} +\mathrm{674}{k}^{\mathrm{6}} +\mathrm{1669}{k}^{\mathrm{7}} +\mathrm{4326}{k}^{\mathrm{8}} +\mathrm{11595}{k}^{\mathrm{9}} +...\right) \\ $$$${A}_{\mathrm{0}} =\mathrm{1}\:\:\:\left({k}^{\mathrm{0}} \right) \\ $$$${A}_{\mathrm{1}} =\mathrm{2}{B}_{\mathrm{1}} +\mathrm{3}\:\:\:\:\left({k}^{\mathrm{1}} \right) \\ $$$${A}_{\mathrm{2}} =\mathrm{3}{B}_{\mathrm{1}} +\mathrm{2}{B}_{\mathrm{2}} +\mathrm{16}\:\:\:\left({k}^{\mathrm{2}} \right) \\ $$$${A}_{\mathrm{3}} =\mathrm{31}+\mathrm{16}{B}_{\mathrm{1}} +\mathrm{3}{B}_{\mathrm{2}} +\mathrm{2}{B}_{\mathrm{3}} \:\:\:\:\left({k}^{\mathrm{3}} \right) \\ $$$${A}_{\mathrm{4}} =\mathrm{103}+\mathrm{31}{B}_{\mathrm{1}} +\mathrm{16}{B}_{\mathrm{2}} +\mathrm{3}{B}_{\mathrm{3}} +\mathrm{2}{B}_{\mathrm{4}} \\ $$$$\mathrm{0}=\mathrm{235}+\mathrm{103}{B}_{\mathrm{1}} +\mathrm{31}{B}_{\mathrm{2}} +\mathrm{16}{B}_{\mathrm{3}} +\mathrm{3}{B}_{\mathrm{4}} +\mathrm{2}{B}_{\mathrm{5}} \\ $$$$\mathrm{0}=\mathrm{674}+\mathrm{235}{B}_{\mathrm{1}} +\mathrm{103}{B}_{\mathrm{2}} +\mathrm{31}{B}_{\mathrm{3}} +\mathrm{16}{B}_{\mathrm{4}} +\mathrm{3}{B}_{\mathrm{5}} \\ $$$$\mathrm{0}=\mathrm{1669}+\mathrm{674}{B}_{\mathrm{1}} +\mathrm{235}{B}_{\mathrm{2}} +\mathrm{103}{B}_{\mathrm{3}} +\mathrm{31}{B}_{\mathrm{4}} +\mathrm{16}{B}_{\mathrm{5}} \\ $$$$\mathrm{0}=\mathrm{4526}+\mathrm{1669}{B}\mathrm{1}+\mathrm{674}{B}_{\mathrm{2}} +\mathrm{235}{B}_{\mathrm{3}} +\mathrm{103}{B}_{\mathrm{4}} +\mathrm{31}{B}_{\mathrm{5}} \\ $$$$\mathrm{0}=\mathrm{11595}+\mathrm{4526}{B}_{\mathrm{1}} +\mathrm{1669}{B}_{\mathrm{2}} +\mathrm{674}{B}_{\mathrm{3}} +\mathrm{235}{B}_{\mathrm{4}} +\mathrm{103}{B}_{\mathrm{5}} \\ $$$${B}_{\mathrm{1}} =−\mathrm{1} \\ $$$${B}_{\mathrm{2}} =−\mathrm{5} \\ $$$${B}_{\mathrm{3}} =\mathrm{1} \\ $$$${B}_{\mathrm{4}} =\mathrm{3} \\ $$$${B}_{\mathrm{5}} =−\mathrm{1} \\ $$$${A}_{\mathrm{1}} =\mathrm{1} \\ $$$${A}_{\mathrm{2}} =\mathrm{3} \\ $$$${A}_{\mathrm{3}} =\mathrm{2} \\ $$$${A}_{\mathrm{4}} =\mathrm{1} \\ $$$${f}\left({k}\right)=\frac{\mathrm{1}+{k}+\mathrm{3}{k}^{\mathrm{2}} +\mathrm{2}{k}^{\mathrm{3}} +{k}^{\mathrm{4}} }{\mathrm{1}−{k}−\mathrm{5}{k}^{\mathrm{2}} +{k}^{\mathrm{3}} +\mathrm{3}{k}^{\mathrm{4}} −{k}^{\mathrm{5}} } \\ $$$$\mathrm{Partial}\:\mathrm{fraction} \\ $$$$=\frac{\mathrm{29}−\mathrm{46}{k}}{\mathrm{10}\left({k}^{\mathrm{2}} −\mathrm{3}{k}+\mathrm{1}\right)}+\frac{\mathrm{8}{k}+\mathrm{3}}{\mathrm{2}\left({k}^{\mathrm{2}} −{k}−\mathrm{1}\right)}−\frac{\mathrm{2}}{\mathrm{5}\left({k}+\mathrm{1}\right)} \\ $$$$\frac{\mathrm{29}−\mathrm{46}{k}}{\mathrm{10}\left({k}^{\mathrm{2}} −\mathrm{3}{k}+\mathrm{1}\right)}=\frac{\mathrm{29}−\mathrm{46}{k}}{\mathrm{10}\left({k}−\left(\frac{\mathrm{3}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)\left({k}−\frac{\mathrm{3}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)\right.} \\ $$$$\mathrm{Also}\:\mathrm{need}\:\mathrm{to}\:\mathrm{decome}\frac{\mathrm{8}{k}+\mathrm{3}}{{k}^{\mathrm{2}} −{k}−\mathrm{1}}\:\mathrm{into} \\ $$$$\mathrm{linear}\:\mathrm{partial}\:\mathrm{fraction} \\ $$$$\mathrm{so}\:\mathrm{we}\:\mathrm{will}\:\mathrm{get} \\ $$$$−\frac{\mathrm{2}}{\mathrm{5}\left({k}+\mathrm{1}\right)}+\mathrm{4}\:\mathrm{more}\:\mathrm{linear}\:\mathrm{part}\:\mathrm{fractions}. \\ $$$$\frac{{A}_{\mathrm{0}} +{A}_{\mathrm{1}} {k}+{A}_{\mathrm{2}} {k}^{\mathrm{2}} +{A}_{\mathrm{3}} {k}^{\mathrm{3}} +{A}_{\mathrm{4}} {k}^{\mathrm{4}} }{\mathrm{1}+{B}_{\mathrm{1}} {k}+{B}_{\mathrm{2}} {k}^{\mathrm{2}} +{B}_{\mathrm{3}} {k}^{\mathrm{3}} +{B}_{\mathrm{4}} {k}^{\mathrm{4}} +{B}_{\mathrm{5}} {k}^{\mathrm{5}} } \\ $$$$=\frac{{x}}{\mathrm{1}−{kp}}+\frac{{y}}{\mathrm{1}−{kq}}+\frac{{z}}{\mathrm{1}−{kr}}+\frac{{u}}{\mathrm{1}−{ks}}+\frac{{v}}{\mathrm{1}−{kt}} \\ $$$$\mathrm{After}\:\mathrm{comparing}\:\mathrm{partial}\:\mathrm{fraction} \\ $$$$\mathrm{with}\:\mathrm{brown}\:\mathrm{expression}\:\mathrm{we}\:\mathrm{can} \\ $$$$\mathrm{see}\:\mathrm{that}\:\left({x},{p}\right)=\left(−\frac{\mathrm{2}}{\mathrm{5}},−\mathrm{1}\right) \\ $$$$\mathrm{remaining}\:\mathrm{pairs}\:\left({y},{q}\right),\left({z},{r}\right),\left({u},{s}\right),\left({v},{t}\right) \\ $$$$\mathrm{can}\:\mathrm{be}\:\mathrm{calculated}\:\mathrm{from}\:\mathrm{remaining} \\ $$$$\mathrm{4}\:\mathrm{partial}\:\mathrm{fractions}. \\ $$$$\mathrm{All}\:\mathrm{pairs}\:\mathrm{are}\:\mathrm{interchangable}\:\mathrm{due} \\ $$$$\mathrm{to}\:\mathrm{symmetry} \\ $$

Commented by mr W last updated on 05/Jul/20

can we find  p^(10) x+q^(10) y+r^(10) z+s^(10) u+t^(10) v=?  without to get x,y,z,u,v,p,q,r,s,t?

$${can}\:{we}\:{find} \\ $$$${p}^{\mathrm{10}} {x}+{q}^{\mathrm{10}} {y}+{r}^{\mathrm{10}} {z}+{s}^{\mathrm{10}} {u}+{t}^{\mathrm{10}} {v}=? \\ $$$${without}\:{to}\:{get}\:{x},{y},{z},{u},{v},{p},{q},{r},{s},{t}? \\ $$

Commented by prakash jain last updated on 05/Jul/20

  A_0 +A_1 k+A_2 k^2 +A_3 k^3 +A_4 k^4   =(1+B_1 k+B_2 k^2 +B_3 k^3 +B_4 k^4 )×  (Σ_(i=0) ^9 a_i k^i +a_(10) k^(10) +...)  a_0  to a_9  are given values.  0=a_(10) +B_1 a_9 +B_2 a_8 +B_3 a_7 +B_4 a_6 +B_5 a_5   a_(10)  is unknown  a_(10) −1∙11595−5∙4526+1∙1669+3∙674−1∙235=0  a_(10) =30769

$$ \\ $$$${A}_{\mathrm{0}} +{A}_{\mathrm{1}} {k}+{A}_{\mathrm{2}} {k}^{\mathrm{2}} +{A}_{\mathrm{3}} {k}^{\mathrm{3}} +{A}_{\mathrm{4}} {k}^{\mathrm{4}} \\ $$$$=\left(\mathrm{1}+{B}_{\mathrm{1}} {k}+{B}_{\mathrm{2}} {k}^{\mathrm{2}} +{B}_{\mathrm{3}} {k}^{\mathrm{3}} +{B}_{\mathrm{4}} {k}^{\mathrm{4}} \right)× \\ $$$$\left(\underset{{i}=\mathrm{0}} {\overset{\mathrm{9}} {\sum}}{a}_{{i}} {k}^{{i}} +{a}_{\mathrm{10}} {k}^{\mathrm{10}} +...\right) \\ $$$${a}_{\mathrm{0}} \:\mathrm{to}\:{a}_{\mathrm{9}} \:\mathrm{are}\:\mathrm{given}\:\mathrm{values}. \\ $$$$\mathrm{0}={a}_{\mathrm{10}} +{B}_{\mathrm{1}} {a}_{\mathrm{9}} +{B}_{\mathrm{2}} {a}_{\mathrm{8}} +{B}_{\mathrm{3}} {a}_{\mathrm{7}} +{B}_{\mathrm{4}} {a}_{\mathrm{6}} +{B}_{\mathrm{5}} {a}_{\mathrm{5}} \\ $$$${a}_{\mathrm{10}} \:\mathrm{is}\:\mathrm{unknown} \\ $$$${a}_{\mathrm{10}} −\mathrm{1}\centerdot\mathrm{11595}−\mathrm{5}\centerdot\mathrm{4526}+\mathrm{1}\centerdot\mathrm{1669}+\mathrm{3}\centerdot\mathrm{674}−\mathrm{1}\centerdot\mathrm{235}=\mathrm{0} \\ $$$${a}_{\mathrm{10}} =\mathrm{30769} \\ $$

Commented by prakash jain last updated on 05/Jul/20

Commented by prakash jain last updated on 05/Jul/20

For wolfram alpha calculation. I used  answers given in paper.

$$\mathrm{For}\:\mathrm{wolfram}\:\mathrm{alpha}\:\mathrm{calculation}.\:\mathrm{I}\:\mathrm{used} \\ $$$$\mathrm{answers}\:\mathrm{given}\:\mathrm{in}\:\mathrm{paper}. \\ $$

Commented by mr W last updated on 05/Jul/20

very nice, thanks sir!

$${very}\:{nice},\:{thanks}\:{sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com