Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 102060 by ajfour last updated on 06/Jul/20

Commented by ajfour last updated on 06/Jul/20

Find r and R.

$${Find}\:\boldsymbol{{r}}\:{and}\:\boldsymbol{{R}}. \\ $$

Answered by mr W last updated on 06/Jul/20

center of circle r inside M(0,m)  m=(1/4)+r^2   center of circle r outside N((√(4r^2 −((1/4)+r^2 −r)^2 )),r)  (1/2)(r+(1/4)+r^2 )=(1/4)[4r^2 −((1/4)+r^2 −r)^2 ]  2r^2 −2r−(1/2)=((1/4)+r^2 −r)^2   r^4 −2r^3 −(r^2 /2)+((3r)/2)+(9/(16))=0  (r−(3/2))^2 (r+(1/2))^2 =0  ⇒r=(3/2)    center of circle R at (R,h)  R^2 +(h−(1/4)−r^2 )^2 =(R+r)^2    ...(i)  ((√(4r^2 −((1/4)+r^2 −r)^2 ))−R)^2 +(h−r)^2 =(R+r)^2    ...(ii)  (i)−(ii):  (2R−(√(4r^2 −((1/4)+r^2 −r)^2 )))(√(4r^2 −((1/4)+r^2 −r)^2 ))+(2h−(1/4)−r^2 −r)(−(1/4)−r^2 +r)=0  ⇒h=2((√2)R−1)  R^2 +(2(√2)R−(9/2))^2 =(R+(3/2))^2   8R^2 −3(1+6(√2))R+18=0  ⇒oR=(3/(16))[1+6(√2)+(√(3(3+4(√2))))]

$${center}\:{of}\:{circle}\:{r}\:{inside}\:{M}\left(\mathrm{0},{m}\right) \\ $$$${m}=\frac{\mathrm{1}}{\mathrm{4}}+{r}^{\mathrm{2}} \\ $$$${center}\:{of}\:{circle}\:{r}\:{outside}\:{N}\left(\sqrt{\mathrm{4}{r}^{\mathrm{2}} −\left(\frac{\mathrm{1}}{\mathrm{4}}+{r}^{\mathrm{2}} −{r}\right)^{\mathrm{2}} },{r}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left({r}+\frac{\mathrm{1}}{\mathrm{4}}+{r}^{\mathrm{2}} \right)=\frac{\mathrm{1}}{\mathrm{4}}\left[\mathrm{4}{r}^{\mathrm{2}} −\left(\frac{\mathrm{1}}{\mathrm{4}}+{r}^{\mathrm{2}} −{r}\right)^{\mathrm{2}} \right] \\ $$$$\mathrm{2}{r}^{\mathrm{2}} −\mathrm{2}{r}−\frac{\mathrm{1}}{\mathrm{2}}=\left(\frac{\mathrm{1}}{\mathrm{4}}+{r}^{\mathrm{2}} −{r}\right)^{\mathrm{2}} \\ $$$${r}^{\mathrm{4}} −\mathrm{2}{r}^{\mathrm{3}} −\frac{{r}^{\mathrm{2}} }{\mathrm{2}}+\frac{\mathrm{3}{r}}{\mathrm{2}}+\frac{\mathrm{9}}{\mathrm{16}}=\mathrm{0} \\ $$$$\left({r}−\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} \left({r}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{r}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$ \\ $$$${center}\:{of}\:{circle}\:{R}\:{at}\:\left({R},{h}\right) \\ $$$${R}^{\mathrm{2}} +\left({h}−\frac{\mathrm{1}}{\mathrm{4}}−{r}^{\mathrm{2}} \right)^{\mathrm{2}} =\left({R}+{r}\right)^{\mathrm{2}} \:\:\:...\left({i}\right) \\ $$$$\left(\sqrt{\mathrm{4}{r}^{\mathrm{2}} −\left(\frac{\mathrm{1}}{\mathrm{4}}+{r}^{\mathrm{2}} −{r}\right)^{\mathrm{2}} }−{R}\right)^{\mathrm{2}} +\left({h}−{r}\right)^{\mathrm{2}} =\left({R}+{r}\right)^{\mathrm{2}} \:\:\:...\left({ii}\right) \\ $$$$\left({i}\right)−\left({ii}\right): \\ $$$$\left(\mathrm{2}{R}−\sqrt{\mathrm{4}{r}^{\mathrm{2}} −\left(\frac{\mathrm{1}}{\mathrm{4}}+{r}^{\mathrm{2}} −{r}\right)^{\mathrm{2}} }\right)\sqrt{\mathrm{4}{r}^{\mathrm{2}} −\left(\frac{\mathrm{1}}{\mathrm{4}}+{r}^{\mathrm{2}} −{r}\right)^{\mathrm{2}} }+\left(\mathrm{2}{h}−\frac{\mathrm{1}}{\mathrm{4}}−{r}^{\mathrm{2}} −{r}\right)\left(−\frac{\mathrm{1}}{\mathrm{4}}−{r}^{\mathrm{2}} +{r}\right)=\mathrm{0} \\ $$$$\Rightarrow{h}=\mathrm{2}\left(\sqrt{\mathrm{2}}{R}−\mathrm{1}\right) \\ $$$${R}^{\mathrm{2}} +\left(\mathrm{2}\sqrt{\mathrm{2}}{R}−\frac{\mathrm{9}}{\mathrm{2}}\right)^{\mathrm{2}} =\left({R}+\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$$\mathrm{8}{R}^{\mathrm{2}} −\mathrm{3}\left(\mathrm{1}+\mathrm{6}\sqrt{\mathrm{2}}\right){R}+\mathrm{18}=\mathrm{0} \\ $$$$\Rightarrow{oR}=\frac{\mathrm{3}}{\mathrm{16}}\left[\mathrm{1}+\mathrm{6}\sqrt{\mathrm{2}}+\sqrt{\mathrm{3}\left(\mathrm{3}+\mathrm{4}\sqrt{\mathrm{2}}\right)}\right] \\ $$

Commented by mr W last updated on 06/Jul/20

Commented by ajfour last updated on 07/Jul/20

Thank you Sir, Excellent!

$${Thank}\:{you}\:{Sir},\:{Excellent}! \\ $$

Answered by ajfour last updated on 07/Jul/20

let the smaller circles touch parabola  at P(h,h^2 )  h=rsin θ   ,    h^2 =r+rcos θ  And     2h=tan θ  ⇒   tan θ=2rsin θ   ⇒   cos θ=(1/(2r))  &     r^2 (1−(1/(4r^2 )))=r+(1/2)  ⇒    r^2 −(1/4)=r+(1/2)          r^2 −r−(3/4)=0    ⇒  r=(1/2)+(√((1/4)+(3/4)))      r=(3/2)       ,   cos θ=(1/3)  center of left smaller circle be C.  y_C = r+2rcos θ = (3/2)+1 = (5/2)    Altitude of isosceles triangle       H=(√((R+r)^2 −r^2 ))  Hcos θ+rsin θ=R  ⇒  (1/9)(R^2 +2Rr)=(R−(3/2)×((2(√2))/3))^2   ⇒   R^2 +3R=9[R^2 −2(√2)R+2]  ⇒    8R^2 −(18(√2)+3)R+18=0     R=((18(√2)+3)/(16))+(√((((18(√2)+3)/(16)))^2 −((18)/8)))     R = (3/(16))(6(√2)+1+(√(9+12(√2)))) .

$${let}\:{the}\:{smaller}\:{circles}\:{touch}\:{parabola} \\ $$$${at}\:{P}\left({h},{h}^{\mathrm{2}} \right) \\ $$$${h}={r}\mathrm{sin}\:\theta\:\:\:,\:\:\:\:{h}^{\mathrm{2}} ={r}+{r}\mathrm{cos}\:\theta \\ $$$${And}\:\:\:\:\:\mathrm{2}{h}=\mathrm{tan}\:\theta \\ $$$$\Rightarrow\:\:\:\mathrm{tan}\:\theta=\mathrm{2}{r}\mathrm{sin}\:\theta\:\:\:\Rightarrow\:\:\:\mathrm{cos}\:\theta=\frac{\mathrm{1}}{\mathrm{2}{r}} \\ $$$$\&\:\:\:\:\:{r}^{\mathrm{2}} \left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}{r}^{\mathrm{2}} }\right)={r}+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\:\:\:\:{r}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}={r}+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:{r}^{\mathrm{2}} −{r}−\frac{\mathrm{3}}{\mathrm{4}}=\mathrm{0}\:\:\:\:\Rightarrow\:\:{r}=\frac{\mathrm{1}}{\mathrm{2}}+\sqrt{\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{3}}{\mathrm{4}}} \\ $$$$\:\:\:\:{r}=\frac{\mathrm{3}}{\mathrm{2}}\:\:\:\:\:\:\:,\:\:\:\mathrm{cos}\:\theta=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${center}\:{of}\:{left}\:{smaller}\:{circle}\:{be}\:{C}. \\ $$$${y}_{{C}} =\:{r}+\mathrm{2}{r}\mathrm{cos}\:\theta\:=\:\frac{\mathrm{3}}{\mathrm{2}}+\mathrm{1}\:=\:\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$\:\:{Altitude}\:{of}\:{isosceles}\:{triangle} \\ $$$$\:\:\:\:\:{H}=\sqrt{\left({R}+{r}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} } \\ $$$${H}\mathrm{cos}\:\theta+{r}\mathrm{sin}\:\theta={R} \\ $$$$\Rightarrow\:\:\frac{\mathrm{1}}{\mathrm{9}}\left({R}^{\mathrm{2}} +\mathrm{2}{Rr}\right)=\left({R}−\frac{\mathrm{3}}{\mathrm{2}}×\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\:{R}^{\mathrm{2}} +\mathrm{3}{R}=\mathrm{9}\left[{R}^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{2}}{R}+\mathrm{2}\right] \\ $$$$\Rightarrow\:\:\:\:\mathrm{8}{R}^{\mathrm{2}} −\left(\mathrm{18}\sqrt{\mathrm{2}}+\mathrm{3}\right){R}+\mathrm{18}=\mathrm{0} \\ $$$$\:\:\:{R}=\frac{\mathrm{18}\sqrt{\mathrm{2}}+\mathrm{3}}{\mathrm{16}}+\sqrt{\left(\frac{\mathrm{18}\sqrt{\mathrm{2}}+\mathrm{3}}{\mathrm{16}}\right)^{\mathrm{2}} −\frac{\mathrm{18}}{\mathrm{8}}} \\ $$$$\:\:\:{R}\:=\:\frac{\mathrm{3}}{\mathrm{16}}\left(\mathrm{6}\sqrt{\mathrm{2}}+\mathrm{1}+\sqrt{\mathrm{9}+\mathrm{12}\sqrt{\mathrm{2}}}\right)\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com